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1 Introduction

The modelling and management of credit risk is a core concern within banks
and other lending institutions. Credit risk refers to the risk of losses due to some
credit event as, for example, the default of a counterparty. Thus, credit risk is
associated with the possibility that an event may lead to some negative effects
which would not generally be expected and which are unwanted. The main
difficulties, when modelling credit risk, arise from the fact that default events
are quite rare and that they occur unexpectedly. When, however, default events
take place, they often lead to significant losses, the size of which is not known
before default. Although default events occur very rarely, credit risk is, by def-
inition, inherent in any payment obligation. Complex underlying dependence
structure of the obliger from a single portfolio can cause severe losses both due
to industry (systematic) or even individual (idiosyncratic) shocks. Modern soci-
ety relies on the smooth functioning of the banking and insurance systems and
has a collective interest in the stability of such systems. This implies that not
only the banks themselves, but also global and local level supervisors intervene
and make efforts to develop risk modelling and optimize financial sector in the
sense of a socially joint understanding of sustainable development. One partic-
ular regulatory issue, called the credit risk capital, is the central topic of this
paper.

The main question is:“ How much credit risk capital a financial institution
should put aside in order to overcome possible sector, country or even world-
wide macroeconomical difficulties and meet its obligations to investors and su-
pervisors?” Implicitly, this questions contains all mathematical building blocks
needed to address the problem:

(i) model for credit risk,

(ii) a risk measure,

(iii) an algorithm to carry out the calculations.

There are many methodologies presented in the literature, all aimed at calcu-
lating one and only value - risk capital of a credit portfolio, yet the choice of a
credit risk model and an appropriate risk measure is still an issue. In order to
encourage convergence towards common standards and approaches in financial
sector as such and, in particular, credit risk management, the Basel Commit-
tee on Banking Supervision (BCBS) frames voluntary guidelines for reasonable
credit risk modelling. BCBS latest global regulatory standard is summarized in
the, so called, Basel III, [5], and its partial review [6], which is an extension of
Basel II, [4], and was developed in response to the deficiencies in the regulation,
revealed during the late 2000s financial crisis. This thesis concentrates on two
papers which reflect widely used in the industry credit risk capital calculation
schemes and also fit the BCBS regulatory framework. The first is the paper by
Cespedes et al. (2004). Its revised version in 2006, [1], is chosen for this work.
The other paper is of Düllmann and Maschelein(2006),[3].
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At the core of [3] we find the methodology presented by Michael Pykhtin
(2004), [8].

The aim of this thesis is to revisit and compare [1] and [3]. We want to
study possible practical limitations, drawbacks and outline convenient applica-
tion frameworks to which one or another method fits better.

The goal of both papers is to calculate credit risk capital of a credit port-
folio, defined in terms of a risk measure. [1] suggest to derive a scaling factor
which relates full loss model to its simplified version. Credit risk capital for the
simplified loss model can be calculated analytically. As discussed in section 4.,
derivation of the scaling factor relies on Monte-Carlo simulations. In contrast to
that, [3] offers an analytical approximation result, which is based on the Taylor
expansion of the risk measure of the input portfolio around the same portfolio
composition under a simplified loss model and then adjusted by the first two
expansion terms. The simplified loss model is similar to the one used in [1], thus
also analytically tractable.

We give a short introduction to the credit risk in general in section 2 and list
several widely used risk measures. In addition we introduce portfolio concen-
tration risks, which are also imposed by supervisory authorities to be identified
and measured. In section 3 we introduce different credit loss models, used in [1]
and [3]. Sections 4 and 5 are devoted to the two different credit risk capital esti-
mation methodologies, taking into account the impact of the concentration risk.
A test run of both methodologies and their performance comparison is discussed
in section 6. [1] methodology relies on Monte-Carlo simulations, which are not
only time consuming but also introduce estimation variance, especially when
dealing with small probability credit default events. This motivates for variance
reduction techniques, which are discussed in section 7. Variance reduction can
be considered as an alternative to the brute-force approach, which in context
of this thesis means an increase in the number of Monte-Carlo simulations in a
straightforward manner in order to obtain higher numerical precision. Section 8
concludes and summarizes the findings that were learned throughout the thesis.

All remaining errors are of the author of the thesis.
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2 Modelling credit risk

We begin with a description of a general credit portfolio that will be considered
throughout the whole paper. In the following subsection 2.1. we discuss differ-
ent ways to measure default risks. At the end of this section we introduce the
implicit portfolio risks, which affect the cross-loan dependence and thus con-
tribute to the portfolio diversification issues.

Section 2 is based on discussion from Chapter 1 and 2 of the book by
Lütkebohmert, [10].

2.1 General framework

Assume a credit portfolio consisting of N different borrowers with a single loan
per borrower. Each loan n = 1, 2, . . . , N is assigned to one sector k = 1, 2, . . . ,K.
Sectors are usually being chosen in a way to represent either regional, geopo-
litical, industrial or any other important specifications and help to identify the
underlying dependence structure among different loans. We focus on a Mer-
ton type one step (one year) credit risk model described via a credit portfolio
random loss L defined as

L =

N∑
n=1

EADn · LGDn · 1{Xn≤Φ−1(PDn)}

=
K∑
k=1

∑
n∈Sector k

EADn · LGDn · 1{Xn≤Φ−1(PDn)} (1)

where

• EADn is borrower’s n exposure at default expressed in monetary values.

If a borrower defaults it does not necessarily mean that the creditor receives
nothing from him. There is a chance that the borrower will partly recover,
meaning that the creditor might receive an uncertain fraction of the notional
value of the claim. LGD is meant to capture this behaviour.

• LGDn is borrower’s n loss given default expressed as a ratio of the full
loan size EADn,

• PDn denotes (one year) default probability of borrower n,

• Xn can be interpreted as the well-being indicator of borrower n, assumed
to have standard normal distribution.

Assume LGDn, EADn and PDn are nonnegative and deterministic for all n.
Denote

Dn = 1{Xn≤Φ−1(PDn)}. (2)

More formally, Xn describe asset log-returns (standardized) of the nth bor-
rower, assuming that they follow classical Black-Scholes model. Thus Xn is
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assumed to be standard normal. This simplifying assumption is borrowed from
asset price modelling, where the classical geometrical Brownian motion (Black-
Scholes model) was for a long time the central stock dynamics model. Since
stock prices reflect company’s well-being and all relevant market information,
one can apply the same reasoning for the well-being or, differently said, cred-
itworthiness of a borrower n. Apart from that, there are practical issues with
data gathering, which is easy to interpret in a multivariate normal framework,
e.g., sampling data for a specified covariance matrix. Φ−1(·) denotes the inverse
of a cumulative distribution function (cdf) Φ(·) of a standard normal distri-
bution N (0, 1). This type of model, in which we evaluate borrowers liabilities
(well-being or functionality) via a threshold, is called a threshold model. Thus
the occurrence of a default (over the following year) is assumed to take place
if the functionality conditions of the borrower (firm) n meet some pre-defined
unsatisfactory level Φ−1(PDn). If this happens, the bank loses EADn · LGDn.

Assumption 2.1. The exposure at default EADn, the loss given default variable
LGDn and the default indicator Dn, (2), of any borrower n are independent.

Note that the default indicators Dn and Dm of different borrowers n and
m are not assumed to be independent. This is implied by occasionally tight
connections across different businesses. Different firms may depend not only
on the same global macroeconomic factors but also on the well-being of their
business partners, particular industry sector. Thus a default of one firm may
cause domino effect leading to financial difficulties or even defaults of their
partners. Generally, a binary random vector of default indicators

D = (D1, D2, . . . , DN ) (3)

can be defined, with the joint default probability function given by

p(d) = P(D1 = d1, D2 = d2, . . . DN = dn) (4)

for d ∈ {0, 1}N and the marginal default probabilities P(Dn = 1) for all n.
We will partly account for this dependence via imposing joint factors across
differentXn. Partly, because the dependence structure will rely on some industry
sector performance indicators and not on a default of one or another particular
borrower. See subsection 2.3. for related discussion. See next section for the
details concerning Xn.

It is often the case that one is interested in the loss as the ratio of the total
portfolio size. In that case one can slightly modify (1) by changing EAD to

wn =
EADn∑
iEADi

for all n. (5)

2.2 Risk measures

It is in general impossible to precisely predict possible losses. Yet to some ex-
tent banks can insure themselves against possible shocks. One way of assessing
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default risks is to introduce a risk measure based on a portfolio loss distribution.
These are typically statistical quantities describing the conditional or uncondi-
tional loss distribution of the portfolio over some predetermined time horizon.

Minimum capital requirements can be defined in many ways. For instance, a
possible framework is to set the minimum risk capital equal to some percentile
of the wighted sum of all assets. Another possibility is to consider the expected
loss. Taking the expectation of (1) gives us

E[L] =
K∑
k=1

∑
n∈Sector k

EADn · LGDn · PDn. (6)

Another possibility is the so-called unexpected loss (UL) which is defined as
the standard deviation of (1), thus

UL =

√√√√ N∑
n=1

N∑
m=1

EADnEADmLGDnLGDmCorr(Dn, Dm). (7)

The main drawback of E[L] and UL is their inability to fully reflect extreme
scenarios (which show to happen in practice, both on a regional and on a global
level, e.g., financial crisis), which lie far in the right tail of the loss distribution
(note that the amount of the loss is expressed in positive values).

One of the most widely used risk measures in the financial industry is the
Value-at-Risk (VaR). It finds many applications in BCBS supervisory frame-
works. Value-at-Risk describes the maximally possible loss which is not ex-
ceeded in a given time period with a given high probability, the so-called confi-
dence level. A formal definition is the following.

Definition (VaR) 2.2. For a confidence level q ∈ (0, 1), the Value-at-Risk
(VaR) of a portfolio loss variable L at the confidence level q is defined as

VaRq(L) = F←L (q), (8)

where F←L is the quantile of the cdf FL(x) = P(L ≤ x) of L.

In general, VaR can be derived for different holding periods and different
confidence levels. In credit risk management, however, the holding period is
typically one year and typical values for q are 95%, 99% or 99.9%.

Note 2.3. It may be difficult to statistically estimate high level VaR due to the
problem of numerically simulating such scenarios of extreme cases. This will be
addressed later in the thesis.

Proposition 2.4. For a normally distributed random variable ζ ∼ N (µ, σ2) it
holds

VaRq(ζ) = µ+ σΦ−1(q) (9)

for q ∈ (0, 1).

8



Proposition 2.5. For a deterministic monotonically decreasing function g(x)
and a standard normal random variable X the following relation holds

VaRq(g(X)) = g(VaR(1−q)(X)) = g
(
Φ−1(1− q)

)
. (10)

There are two major drawbacks with VaR.

1. VaR is not a coherent risk measure since it is not subadditive.

Non-subadditivity means that, if we have two loss distributions FL1 and FL2

for two portfolios and if we denote the overall loss distribution of the merged
portfolio L = L1 + L2 by FL, then we do not necessarily have that

VaRq(FL) ≤ VaR(FL1) + VaR(FL2).

Hence, VaR of the merged portfolio is not necessarily bounded above by the
sum of the VaRs of the individual portfolios which contradicts the intuition of
diversification benefits associated with merging portfolios.

2. VaR gives no information about the size of the losses which occur with
probability 1− q.

If the loss distribution is heavy tailed (and we will see this in examples of section
7), this can be a problem.

Both of the above mentioned drawbacks motivate for another risk measure,
called the expected-shortfall (ES), also known as conditional VaR.

Definition (ES) 2.6. For a loss L with E[|L|] < ∞ and distribution function
FL, the expected shortfall (ES) at confidence level q ∈ (0, 1) is defined as

ES[L] = E[L|L ≥ VaRq(L)]. (11)

Equivalently, (11) can be rewritten as

ES[L] =
1

1− q

∫ 1

q

VaRu(L)du. (12)

Thus, ES is a weighted average VaR of the whole loss distribution tail above
VaRq(L) level. Rephrased, an expected loss that is incurred in the event that
VaRq(L) is exceeded. Definition 2.6. implies the inequality ESq ≥ VaRq. ES is
subadditive and contrary to VaR also captures the average value of the extreme
loss (which may occur with probability 1 − q). ES is also introduced in Basel
III, [6], for market risks (although VaR is still kept in other risk frameworks)
and is gaining popularity.

Figure 1 is an example visualizing all presented risk measures, assuming
that the loss variable L is standard normal and the percentile level is fixed at
q = 95%.

It can happen that a bank loses all of its positions in a specified time period.
But it is economically inefficient to protect yourself against such unlikely event

9



−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

loss

pd
f

Unexpected loss

95% VaR

95% ES

Expected
loss

Figure 1: Probability density function of N (0, 1) distributed loss variable and
its expected loss, unexpected loss (standard deviation), VaR, (8), and ES, (11),
at a 95% confidence level.

by holding some capital buffer. Banks are aimed towards profit, thus a tradeoff
between minimizing its risk capital buffer (and still guarantee to some extent
all deposit obligations) and investing has to be faced. In a period of growth
one could actually use any of the previously presented risk measures in order
to manage possible losses. This is not the case in periods of financial distress
when the relative behaviour of different risk measures can vary extremely and
therefore can be crucial for a company’s ability to overcome this period. These
issues are also addressed in Basel III, [5], context by asking financial institu-
tions to calculate stressed risk measures, meaning that risk measures have to
be calculated based also on the historical data of a financial distress in order to
correct for the final risk capital.

2.3 Sector and Name concentration

In order to achieve as realistic as possible credit risk measurements it is im-
portant to realise the underlying dependence structure across different loans
stemming either from the same sector (intra-sector dependence) or different
sectors (cross- or inter-sector dependence). This is important not only from the
sustainability point of view but also gives opportunities to adequately reduce
risk capital buffers for the banks which propose higher diversity and thus in-
creased quality of a credit portfolio. One can think of some basic credit risk
capital requirement models, e.g., calculated as a share of the weighted portfolio
loans

risk capital = 8% ·
∑
loans

weightloan · loan size

or defined via VaR for the asymptotical single risk factor (ASRF) model (see
subsection 3.2), do not provide an additional option to quantify and account for

10



the quality of a portfolio, thus partly ignoring the implicit dependence structure
across different loans.

Definition (Concentration risk) 2.7. Concentration risks in credit portfolios
arise from an unequal distribution of loans to single borrower (name concentra-
tion) or different industry or regional sectors (sector or country concentration).
Moreover, certain dependencies as, for example, direct business links between
different borrowers, or indirectly through credit risk mitigation, can increase the
credit risk in a portfolio since the default of one borrower can cause the default
of a dependent second borrower. This effect is called default contagion and is
linked to both name and sector concentration.

Historical events have shown that ignorance of concentration risk led to seri-
ous difficulties in many financial institutions, particularly during crisis periods
(see, for instance, [14]).

It may be difficult to account for all causal relations between different loans
(thus firms) in a portfolio. Credit portfolios of many big banks can reach a
size of more than 3000 liabilities. Hence it is important to quantify some unify-
ing, leading variables to describe the dependence structure in a computationally
feasible way. We split them into two groups:

• systematic risk factors which represent macroeconomical and industry-
level changes and have influence on performance of each borrower (or
actually reflect the collective performance of an industry sector on a re-
gional or global level). Each borrower’s sensitivity to this risk factor can
be set individually.

• idiosyncratic risk factors which reflect each borrower’s individuality.

In the introduction (section 1) a short insight in the methodologies of [1] and
[3] was presented. The difference between the so-called simplified and the full
loss model lies in the way of defining each borrower asset returns Xn, (1) and
(2), whereas the portfolio itself (EADs, PDs and LGDs) stays unchanged. If
all Xn are influenced by the same, single systematic risk factor, we call this a
single-factor Merton type credit risk model (this was meant by the simplified
model). In case there exist Xn and Xm for n 6= m, which are influenced by
different systematic risk factors, the model is said to be multi-factor.
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3 Merton type default model

We have already stated the general loss framework for a credit portfolio via
(1). Whereas EADs, LGDs and PDs are assumed to be given, the well-being
indicators Xn, (1) and (2), need to be modelled in order to incorporate the
dependence structure, particularly the systematic and idiosyncratic risk factors.
It is the topic of this section to introduce several ways of modelling Xn in the
first part and to provide some analytical approximation results for risk measure
calculations based on assymptotical analysis in the second part.

3.1 Multi-factor model

There are several ways to incorporate systematic and idiosyncratic risk factors
in the model of Xn, thus to express borrowers performance in terms of these
factors. We consider the set-up of (1).

Assumption 3.1. The asset returns (or the well-being) Xn of borrower n are
given by (after standardization1)

Xn = rnYn +
√

1− r2
n ξn for every n ∈ {1, 2, . . . , N} (13)

where Yn, ξn ∼ N (0, 1) representing systematic and idiosyncratic risk parts re-
spectively. The factor loadings rn represent borrower’s n sensitivity to system-
atic risk Yn. rn are chosen such that Xn stays standard normal. ξn is indepen-
dent of Yp, ξm for all p ∈ {1, 2, . . . , N} and n 6= m respectively.

In context of this paper we consider following three models for Yn. The first
model introduces a single macro factor Z and a unifying systematic risk factor
on a sector-level . Mathematically expressed,

Yk(n) = βZ +
√

1− β2 ηk(n), (14)

where k(n) ∈ 1, 2, . . . ,K is the sector to which borrower n is assigned. Z is set
to be standard normal, ηk(n) are sector specific contributions to the systematic
risk (in contrast to macro factor Z), all iid N (0, 1) and independent of Z.

Second model extends the previous one by allowing parameter β to be more
generally an average factor correlation for a specific sector, thus

Yk(n) = βk(n)Z +
√

1− β2
k(n) ηk(n). (15)

Models (14) and (15) are used in [1]. A different, third approach is suggested
by [8] and used in [3]. Let K original correlated systematic factors be de-
composed into K independent standard normal systematic risk factors Zk for
k ∈ {1, 2, . . . ,K}.

Yk(n) =
K∑
k′=1

αk(n)k′Zk′ , (16)

1Normally distributed with zero mean and unit variance, also called as standard normal.
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where the coefficients αk(n)k′ must satisfy
∑K
k′=1 α

2
k(n)k′ = 1 to keep Yn standard

normal.
To relax the notation we write αnk′ instead of αk(n)k′ implicitly meaning

that the vectors (αnk)k, (αmk)k ∈ RK are equal if k(n) = k(m), i.e., loans n
and m represent the same sector.

Notice that the number of different Zk in (16) corresponds to the number
of sectors and this is not a coincidence. In practice, one usually searches for
appropriate index-type instruments that can help to quantify performance of the
underlying industry sectors. For the accounting purposes a financial institution
may introduce more detailed sector definitions. But this makes no sense for
the credit risk model in case different sector loans are set to be influenced by
the same systematic risk factor because there is no financial data to make these
loans sector-distinguishable. Thus often meaningful sector definitions stem from
the available data framework.

It is in general impossible to directly calculate VaR or ES of a portfolio loss
L (1), due to unknown FL. Let us derive some first facts about L, that can
provide some additional information about FL.

The condition of the default indicator Dn, (2), Xn ≤ Φ−1(PDn) can be
rewritten using (13) as rnYn +

√
1− r2

n ξn ≤ Φ−1(PDn), which is equivalent to

ξn ≤
Φ−1(PDn)− rnYn√

1− r2
n

(17)

Having (17), we define the notion of a conditional probability of default PDn(·)
as

PDn(Yn) = E[Dn|Yn] = Φ

(
Φ−1(PDn)− rnYn√

1− r2
n

)
. (18)

Systematic risk factor term Yn is the only random part in (18). Thus, for
instance, using (16) we get conditional default probability for borrower n given
realization z = (z1, z2, . . . , zK) of (Z1, Z2, . . . , ZK) as

PDn(z) = Φ

(
Φ−1(PDn)− rn

∑K
k=1 αnkzk√

1− r2
n

)
. (19)

This gives rise to the conditional expectation of L, (1),

E[L|z] =
N∑
n=1

EADn · LGDn · Φ

(
Φ−1(PDn)− rn

∑K
k=1 αnkzk√

1− r2
n

)
. (20)

Since default probabilities depend only on Yn (see (18)) we can compute joint
distribution of the default indicator D, (3), via integrating out Yn terms as

P[D1 = d1, D2 = d2, . . . , DN = dN ]

=

∫
RN

N∏
n=1

PDn(y)dn(1− PDn(y))1−dndFY (y), (21)
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where FY denotes the cdf of the composite factors (Y1, Y2, . . . , YN ) and d ∈
{0, 1}N . Using substitution qn = PDn(y) we can rewrite (21) as

P[D1 = d1, D2 = d2, . . . , DN = dN ]

=

∫
[0,1]N

N∏
n=1

qdnn (1− qn)1−dndF (q1, q2, . . . , qN ), (22)

where F is a cdf of a multivariate centred normal random vector with correlation
matrix Γ, denoted as

F (q1, q2, . . . , qN ) = NN (PD−1
1 (q1), PD−1

2 (q2), . . . , PD−1
N (qN ); Γ), (23)

where NN denotes an N−dimensional multivariate normal distribution with
zero mean vector and correlation matrix Γ. An entry γmn ∈ Γ is the correlation
of Xm and Xn. In general, we can write the loss distribution as

P[L ≤ l] =∑
d∈{0,1}N ;ψn≤l

ψn · P[D1 = d1, D2 = d2, . . . , DN = dN ], (24)

where ψn = ψn(d) = EADn · LGDn · dn for all n. Thus it is now a matter of
how we choose the cdf F in (22).

Both in [1] and [3] authors work with the classical Gaussian copula when
modelling dependence between systematic risk factors {Yk}Kk=1. Recall that
a d−dimensional copula C is a distribution function on [0, 1]d with standard
uniform marginal distributions

C(u1, u2, . . . , ud) : [0, 1]d → [0, 1],

as by [19]. Copulas are used to describe the dependence structures across uni-
form random variables U1, U2, . . . , Ud, which can be transformed into any ran-
dom variables Υ1,Υ2, . . . ,Υd with cdf F1, F2, . . . , Fd by setting Υ1 = F−1

1 (U1),
Υ2 = F−1

2 (U2), . . . ,Υd = F−1
d (Ud). The reason for using Gaussian copula in our

framework of credit risk management is both the assumed underlying Black-
Scholes asset dynamics model, giving rise to normally distributed log-returns,
and also the economical interpretation of the systematic risk factors and their
correlation matrix, which in practice equals the correlation matrix of different
industry indices chosen by a bank as the systematic risk factors Zk (recall (16))
for its portfolio model. We will see how to choose parameters αnk from (16) in
section 5.

Note that (24) together with (23) is sufficient to directly apply Monte-Carlo
techniques for approximation purposes. Whereas [3] provides an analytical esti-
mation for VaR(L) or ES(L), the methodology discussed in [1] is semi-analytical
and relies on Monte-Carlo simulations. Typically one uses large Monte-Carlo
simulations also for the reference result. Recall that risk measures as VaR or
ES need a good tail estimation of the loss distribution, meaning that we are
interested in rare events. The increasing computational time, that is needed
for precise calculations in case of a heavy tailed L, motivates for importance
sampling techniques, that we discuss in section 7.
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3.2 Asymptotic single risk factor model (ASRF)

In this subsection we present first step towards analytical approximation of
portfolios VaR. The so-called Asymptotic single risk factor (ASRF) model was
introduced by Basel Committee incorporating the idea that a risk capital needed
for a risky loan should not depend on the whole portfolio decomposition (called
portfolio-invariance). One reason for that is fast and straightforward computa-
tion, as we will see. ASRF model also allows for a kind of comparison study
across different companies and sectors. Yet neglecting portfolio decomposition
is also its main drawback, since such an approach does not account for loan
diversity, thus gives no information about how good (in the risk management
sense) a loan fits some portfolio.

ASRF is based on the law of large numbers. When the number of loans tends
to infinity, the idiosyncratic factors are diversified away and the only driving fac-
tor is the systematic risk. Such a portfolio is called infinitely fine grained.

As mentioned before, [1] and [3] start with a multi-factor model. They re-
duce it to a simplified one-factor credit risk model, calculate the risk capital
under its framework and then adjust the result to account for the multi-factor
case. Under ASRF model VaR can be calculated analytically and because of
that ASRF model results are used as an analytical approximation for the risk
capital under the simplified, one-factor model.

In the following two theorems and the related assumptions are presented.
These theorems show how to calculate VaR in ASRF framework, thus provide
an approximation for VaRq(L) under a one-factor model.

Assumption 3.2. Let the loan exposures fulfil the following conditions

1. Portfolios are infinitely fine grained, i.e., every single exposure contributes
arbitrarily little to the total portfolio exposure.

2. Dependence across exposures is driven by a single systematic risk factor
(i.e., Xn = rY +

√
1− r2ξn for all n).

Assumption 3.3. Assume that the variables Un = LGDn ·Dn ∈ [0, 1], for n =
1, 2, . . . , N , and are mutually independent conditionally on Y .

The first condition of Assumption 3.2. is satisfied if the following Assumption
3.4. holds.

Assumption 3.4. Let the loan exposure sizes fulfil the following conditions

1. limN→∞
∑N
n=1 EADn →∞.

2. ∃ρ > 0 such that the largest exposure share is of order O(N−
1
2 +ρ). Thus

the share of largest exposure shrinks to zero as the number of loans N
increases.

Theorem 3.5. Under Assumptions 3.3. and 3.4. the strong law of large num-
bers implies

L− E[L|y]
a.s.→ 0 as N →∞ (25)

where y is a realization of a single systematic risk factor Y.
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This is the central result for the ASRF model. See [20, Prop 1] for a formal
proof. Whereas in general Y can be a random vector in Theorem 3.5., it is no
more the case in Theorem 3.6. and related Assumptions 3.6. See section 4 and
5 for the methods of switching from a multi-factor to a single-factor model.

Assumption 3.6. There is an open interval B containing the qth percentile
VaRq(Y ) of the systematic risk factor Y and there is a real number N0 < ∞
such that

1. ∀ n, E[Un|y] is continuous in y ∈ B,

2. E[L|y] is nondecreasing in y ∈ B for all N ≥ N0, and

3. infy∈B E[L|y] ≥ supy≤inf B E[L|y] and supy∈B E[L|y] ≤ infy≥supB E[L|y]
for all N ≥ N0.

Assumption 3.6. implies that the neighbourhoodof the qth quantile of the
random variable E[L|Y ] is connected to the neighbourhood of the qth quantile
of Y .

Theorem 3.7. Under Assumptions 3.2. (2) and 3.6. we have for N ≥ N0

VaRq(E[L|Y ]) = E[L|VaRq(Y )]. (26)

For a proof see [20, Prop 4]. Said in words, under certain assumptions VaR
of a random variable E[L|Y ] is equal to E[L|VaRq(Y )] and

E[L|VaRq(Y )] =
N∑
n=1

EADn · LGDn · PDn(VaRq(Y )), (27)

where PDn(·) is defined as in (18). This central result is the approximation for
VaRq(L) under single-factor ((13) with Yn ≡ Y for all n) model.

It is in general not clear how to determine N0 from Assumption 3.6. and
Theorem 3.7. Thus an open question is how big (in the number of loans) a
portfolio must be in order for (27) (which is always true in the ASRF case)
to be actually a “good” estimate of VaRq(L) under the single-factor model,
Assumption 3.2. point 2.

In the beginning of this subsection and in subsection 2.3. we outlined the
drawbacks of ASRF model and the importance of considering concentration
risks, Definition 2.7., respectively. In the following two sections [1] and [3]
methodologies are presented, respectively, which try to quantify concentration
risk and thus improve the single-factor model VaR given by (27).
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4 Cespedes et al. methodology

We begin with an introduction of a semi-analytic model [1] for calculating multi-
factor credit risk and measuring sector concentration. Their focus risk measure
is the economic capital (EC) defined as

EC = VaRα − E[L]. (28)

EC is used in case the expected loss E[L] is already incorporated in the banking
service price. By Assumption 3.2. ASRF model neglects diversification effects
in terms of simplifying the dependence structure both on borrower and sector
level. Authors provide an extension of the ASRF model to a general multi-factor
setting which can recognize diversification effects. They derive an adjustment
to the single risk factor model in form of a scaling factor to the economic capital
required by the ASRF model. This so-called capital diversification factor (DF)
is a function depending on sector size and sector correlations of a particular
portfolio. Loan homogeneity is reflected by an index similar to the Herfindahl-
Hirschmann-Index (HHI).

Note 4.1. HHI is a market concentration index. It equals the sum of squares
of the relative firm size with respect to the total considered market size. In
portfolio theory HHI reflects the effective number of loans, i.e., it reaches 1/N
if a portfolio is composed out of N equal size loans and increases up to one in
case there are several or in the extreme case one dominant size loan.

The diversification factor is estimated numerically using Monte-Carlo simu-
lations.

4.1 Basic setup

Our starting point is the general credit loss L, defined by (1), and an asset
return model similar to (13)

Xn = rk(n)Yk(n) +
√

1− r2
k(n) ξn for all n. (29)

Thus borrower n and m share the same factor loading rk(n) and systematic risk
factor Yk(n) if they represent the same sector, i.e., k(n) = k(m). To simplify
notation, we write for all k

Yk = Yk(n),∀n ∈ Sector k.

Similarly set the notation rk = rk(n). For the Yk dynamics the single macro-
factor models (14) and (15) are chosen.

We refer to the β or βk, (14) and (15), as to the inter- (or cross-) sector
correlations and to the rk as to the intra-sector correlations.

Remark 4.1. Having (29) and (15) the correlation between borrowers n and m
(belonging to sectors l and k respectively) asset returns are given by

Corr(Xn, Xm) =

{
r2
k if k = l,

rlrkβlβk if k 6= l.
(30)
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Observe that on a sector level point 2 of Assumption 3.2. holds. This allows
to approximate subportfolio’s, consisting of sector k loans, VaR via an ASRF
model. More precisely, at first sector level L is approximated by conditional ex-
pectation E[L|Y ] using Theorem 3.5. and then VaR of E[L|Y ] is calculated with
Theorem 3.7. Denote sector’s k qth percentile VaR by VaRk,q and equivalently
to (27) get

VaRk,q =
∑

j∈Sector k

EADj · LGDj · Φ−1

(
Φ−1(PDj) + rkΦ−1(q)√

1− r2
k

)
. (31)

Note that this is a strict equality only if the number of loans in sector k is
greater than N0 from Theorem 3.7. Yet we neglect this fact and always write
an equality. Sector level economic capital, (28), is then

ECk =∑
j∈Sector k

EADjLGDj

[
Φ−1

(
Φ−1(PDj) + rkΦ−1(q)√

1− r2
k

)
− (PD)j

]
. (32)

Assumption 4.2. Assume perfect correlation between all the sectors, i.e., β = 1
or βk = 1 for all k, which is then equivalent to the ASRF model systematic risk
setup.

Then an approximation (27) of Theorem 3.7. can be applied to the whole
portfolio. The overall capital is then equal to the sum of the stand-alone capital
of all sectors

EC1f =
∑
k

ECk, (33)

where 1f stands for one-factor, due to Assumption 4.1. Equivalently, (by adding
back the expected loss) portfolio VaR

VaR1f =
∑
k

VaRk. (34)

Remark 4.3. Clearly Assumption 4.1. leads to a significant simplification of
the underlying loan dependence structure. Nevertheless, VaR1f was at the core
of Basel II, [4], regulatory framework for the credit risk capital calculation.
In order to compensate for the ASRF model assumption, BCBS introduced
additional rules for the parameter choice, e.g., the intra-sector correlation pa-
rameters rk, which stem from calibration procedures with respect to “different”
real portfolios.
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4.2 The capital diversification factor

We come to the core idea of the methodology [1].

Definition (DF) 4.4. The capital diversification factor DF is defined as the
ratio of the economic capital computed using the multi-factor setting and the
one-factor capital

DF =
ECmf

EC1f
, (35)

with 0 ≤ DF ≤ 1. Depending on the problem setup, EC can be replaced by
VaR, leading to an analogous DF definition.

Once DF is at hand, the multi-factor VaR or ECmf of some portfolio of
interest P ∗ can be calculated as

ECmf(P ∗) = DF (P ∗) · EC1f(P ∗), (36)

where EC1f(P ∗) is calculated using (27) and (6). [1] suggests to estimate DF
via a large number of simulated portfolios, for which ECmf is approximated
via Monte-Carlo and EC1f is calculated as before, and by applying linear or
nonlinear regression techniques on the gathered data. Thus an equality in (36)
will actually be an approximation. In order to parametrize DF, some measures
need to be considered, which reflect portfolio composition and the underlying
dependence structure. [1] chooses to parametrize DF based upon two following
diversification sources:

1. the average inter-sector correlation β̄,

2. relative sector contribution to EC1f, captured by the capital diversification
index CDI

CDI =

∑
k ECk

(EC1f)2
, (37)

where ECk, EC1f can be replaced by VaRk, (31), VaR1f, (34), respectively,
if the problem setup considers VaR as a risk measure.

One can interpret the ratio 1/CDI as the effective number of sectors in the
portfolio. It is a modification of a Herfindahl-Hirschman index, [7], based on
the economic capital required in each sector by a single-factor model. It does
not capture individual estimates of intrasector and intersector correlations, [11].
Choice of this explanatory variable is also motivated by the fact that, if credit
losses were normally distributed (this is not the general case due to Dn, (2)),
an equation

ECmf =
√

(1− γ)CDI + γ · EC1f (38)

would hold, where γ denotes the single correlation parameter of credit losses
(and not the asset correlations). This motivates for the following setup of (36)

ECmf(CDI, β̄) ≈ DF(CDI, β̄) · EC1f, (39)
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where we of course do not expect a precise statement. Thus the problem reduces
to finding an expression for DF in terms of CDI and β̄. If this is achieved, we
are in position to approximate the multi-factor credit risk capital (defined in
terms of economic capital) for any portfolio P ∗ via

ECmf(P ∗) ≈ DF(CDI(P ∗), β̄(P ∗)) · EC1f(P ∗). (40)

Remark 4.5. EC can be replaced by VaR in (39), as mentioned in Definition
4.4. This implies a different DF in general.

Remark 4.6. ASRF framework can also be used as a crude approximation of
a loss model incorporating (14), (15) or even (16) and having rn defined on a
borrower instead of a sector level. It is straightforward to perform Monte-Carlo
simulations in any of the previously mentioned cases, hence an approximation
of ECmf is not an issue. Thus we can provide an approximation of type (39) in
any systematic risk factor model case. Depending on the systematic risk model,
the average inter-sector correlation β̄ is defined as:

• the inter-sector correlation β from (14) in case this asset returns model is
used,

• in case of (15) set

β̄ =
∑
k

ECk

EC1f
· βk, (41)

• and, if the systematic risk is given by (16), define

β̄ =

∑K
k=1

∑
l 6=k θkl · ECk · ECl∑K

k=1

∑
l 6=k ECk · ECl

, (42)

where θkl ∈ Θ for a matrix Θ ∈ RK×K . An entry θkl denotes the cor-
relation between sectors k and l (for instance, correlation of two indices,
describing sector k and l performance, respectively).

Similarly to the CDI, (37), one can interchange EC and VaR in equations (41)
and (42), if the problem setup uses VaR as the risk measure.

4.3 Parametrization of DF

In this subsection the parametrize procedure of DF, (39), is presented. We will
see that the parametrization procedure relies on several assumptions concern-
ing different model parameters. The choice for these assumptions are discussed
later in subsection 4.5 and section 6. Let us focus in this case on VaRq(L)
calculation. Thus we use VaRk instead of ECk in the definition of CDI, (37).

The approach is based on Monte-Carlo simulations within the following pro-
cedure:

1. Choose the model for asset returns Xn and systematic risk factors Yk. Fix
the asset return and the underlying systematic risk factor model, e.g., (29)
with (14).
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2. Fix the number of loans and sectors N,K ∈ N, respectively. Assume that
loans are homogeneously distributed across sectors, i.e., ≈ N/K loans per
sector.

3. Sample β from some assumed distribution, e.g., β ∼ U(0.5, 0.8).

4. Simulate independently EADs, PDs, LGDs and rks from some assumed
distributions. Let us denote by P ∗ the portfolio that has been created out
of steps 2., 3. and 4.

5. Sample “many” times portfolio P ∗ loss LP∗ , (1), via Monte-Carlo simula-
tions:

(a) sample Z, ηk ∼ N (0, 1) for every sector k,

(b) calculate the risk factor value Yk(n),

(c) sample ξn for every loan n, calculate Xn, (29), for all n,

(d) finally calculate L, (1).

6. Estimate VaRmf
q (LP∗) based on the obtained sample data for LP∗ .

7. Calculate VaR1f
q (LP∗) as in (34).

8. Calculate CDI(P ∗), (37), and β̄(P ∗) according to the chosen model (see
Remarks 4.5. and 4.6.).

9. Set

DF(CDI(P ∗), β̄(P ∗)) =
VaRmf

q (LP∗)

VaR1f
q (LP∗)

. (43)

10. Save DF, CDI and β̄ values for P ∗ and go to step 3. to construct new port-
folio and re-do steps 4.-10. Once DF, CDI and β̄ values are obtained for
“reasonably” many portfolios, we can proceed with DF parametrization.

11. The diversification factor DF is a function of β̄ and CDI. Thus DF de-
fines a 3D surface over the β̄ × CDI plane. DF parametrization can be
obtained, for instance, using non-linear regression, where one has to esti-
mate parameters aij for i, j = 1, 2, . . . , C based on the dataset obtained
in step 10, assuming that DF follows the rule

DF = a0 +
∑
i,j≥1

aij(1− CDI)i(1− β̄)j . (44)

Let C = 2 be fixed for all further DF models. After DF parametrization is
obtained, one typically chooses (β̄,CDI) ∈ [0, 1]2 to plot the DF surface.
This is due to the construction of CDI, implying 0 < CDI ≤ 1, and since
firms usually show positive correlatedness in their performance reaction
on macroeconomical changes or on bankruptcy of binding companies, mo-
tivating for nonnegative β̄. Of course, the β̄ range for DF surface plot can
be extended if steps 3 & 10 argue in favour of that, yet this is not the case
of examples contained in this thesis.

21



4.4 Comments on DF parametrization

DF parametrization relies on time-consuming Monte-Carlo simulations (recall
that we perform step 5 for every artificially constructed portfolio P ∗). Since we
want to achieve high approximation precision for ECmf, we would need our arti-
ficial portfolios to densely reflect a setup region (in the sense of number of loans
and sectors, specifications of EADs, PDs etc.) of prospective future portfolios.
Thus, it is important to have a priori a good understanding of how to sample
(from which distributions in order to reflect potential portfolio characteristics)
in steps 3 & 4 and what are/will be the typical number of loans and sectors,
step 2.

See Remark 4.8. for the discussion concerning the homogeneous loan distri-
bution assumption in step 2.

A popular statistical estimator of VaRq(L), recall step 6, is LdqIe obtained
by increasingly ordering the samples (Li)i∈{1,...,I}, obtained in 5. This estima-
tor is used in numerical experiments, presented in section 4.6.

The assumed probability distributions for parameter sampling in steps 3 &
4 may be either continuous or discrete. Dependence across some or even all pa-
rameters can be imposed in their sampling. If needed, some parameters may be
held constant or defined as a function of the others. See some related remarks
in the discussion of subsection 4.5.

Depending on the chosen model (step 1) and a specific portfolio construc-
tion (steps 2-4), the corresponding loss variable L can possess a heavy tailed
density function. This can imply poor VaRq estimations for q close to 1 unless
“considerably large” number of samples were computed (step 5).

One can choose a parametrization model different to (44). Sometimes a con-
straint a0 = 1 (together with model (44)) is set in order to stress the upper
bound DF ≤ 1. Yet the parametrization model (44) has shown to fit nicely (in
the sense of statistical tests) sampled data clouds (step 10) in different numeri-
cal experiments. See subsection 4.6 for practical examples.

Finally, after doing the procedure of DF parametrization from subsection
4.3, in which the risk parameter characteristics were chosen such to reflect some
specific needs, the time consuming calculation has to be carried out once. The
obtained results and DF are stored and can be used as long as the future port-
folio compositions are not in “serious” contrast to the simulated portfolios, used
for DF parametrization.

4.5 Critique and extensions in the literature

The main benefit of [1] is the fast calculation and simple expressions once DF
is calibrated. [1] also suggests simple marginal capital contribution evaluation
technique, which is an additional risk management instrument that can con-
tribute to a better portfolio credit risk monitoring.

Several immediate drawbacks need to be mentioned. First of all it is the
method’s reliance on the ASRF model, which fully neglects dependence struc-
ture across asset returns. The explanatory variables CDI and β̄ capture to
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some extent the concentration risk and the average cross sector correlation.
This cannot recognize name concentration risks, i.e., when different loans as-
signed to one or several sectors exploit higher downward movement correlations
than other loans of the same sector. This can happen if, for instance, different
companies are units of some greater holding. Furthermore, the model doesn’t
allow for borrower specific asset correlations, see Remark 4.1. Yet a crude esti-
mation, for instance, based on weighted average r̂k of rn corresponding to loans
from sector k can be constructed, as discussed in Remark 4.6.

Another drawback is the simplifying assumption of the average cross-sector
correlation β̄. Whereas it is used as a portfolio characterizing measure and thus
one would want it to distinguish different portfolios, this is not the case in
general. For instance, a portfolio, which is highly concentrated towards a sec-
tor with a high correlation with other sectors, and another portfolio, which is
equally high concentrated, but towards a sector, which is only weakly corre-
lated with other sectors, can possess the same average cross-sector correlation.
However, the concentration risk levels in such portfolios can be considerably
different. This is also noted in [3].

DF parametrization, subsection 4.3, requires Monte-Carlo simulations. In
practice one may work with credit portfolios of size greater than 4000 loans.
The nature of each portfolio can be different. Each portfolio may have individ-
ual regional or industrial sector based systematic risk factors, different relative
exposure sizes and dependence relations across risk parameters as EADs, PDs,
rk, etc. Thus to obtain good DF quality, large amount of artificially simulated
portfolios for DF parametrization need to be considered. This may lead to, e.g.,
days or even weeks of compilation procedures in Matlab on a standard PC.

[1] methodology has been also criticized for the relation DF ≤ 1, definition
4.4. The reason is the following. ASRF model is used for the credit risk cap-
ital requirement calculation in the Basel II, [4], regulatory framework. Yet to
compensate for many assumptions of the ASRF model, a calibration with re-
spect to some real life benchmark portfolios was performed, making VaR1f a
good approximation of VaRmf for the benchmark portfolios. Thus, as a result
of calibration, some relations for risk parameters as factor loadings rn, PDs,
LGDs, etc., were implied. For example, calibration implied relations between
PDs and rn, which are prescribed in [4] regulations but at the same time are
doubted by many empirical studies, as noted in [13]. Apart from that, assume
one incorporates these relations in steps 2-4, subsection 4.3,, when simulating
artificial portfolios for DF parametrization. Let us call D̄F the resulting DF
parametrization for this case. Then D̄F ≤ 1 does not hold in general. D̄F ≈ 1
for the portfolios used in calibration. This implies that for any more diversified
portfolio D̄F ≤ 1, whereas for a portfolio with higher concentration risks and
less homogeneous loan exposure sizes one obtains D̄F ≥ 1. Also authors of [1]
recognize this possible drawback and suggest that a case dependent rescaling
factor for DF can be introduced to account for this issue. See, for instance, [12]
for relevant results.
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4.6 Parameter sensitivity test and discussion

In this subsection examples for the DF parametrization procedure from sub-
section 4.3. are presented. We give plots to observe the impact of changes in
the underlying parameters, that determine portfolio. An additional task is to
induce a better intuitive understanding of Monte-Carlo sampling results.

Assume we are interested in the 99.9% percentile level VaRmf. We follow
the prescription of subsection 4.3 to obtain the corresponding DF.

Example 1. To start with a relatively fast numerical experiment, let us
simulate 280 portfolios under the following conditions (see Remark 4.7. on dis-
cussion concerning the choice of parameter sampling distributions).

• Choose the asset returns model (29) together with the single macro factor
systematic risk factor model (14).

• Set the total number of loans to N = 1000 and let the number of loans per
sector be equal to K/N (with an appropriate rounding) for K = 1, 2, 3.

• Sample inter-sector correlation parameter β ∼ U(0, 1).

• Let PDk ∼ U(0.01, 0.075) for every sector k and set PDn = PDk for every
loan n from sector k. Thus we assume homogeneous default probabilities
across all loans from a particular sector. Although real life portfolios in
general do not fulfil this assumption, it is partly motivated by [3], where
the methodology assumes sector level aggregation of loans, leading to, for
instance, sector level PDs. See subsection 5.2.

• Similarly to the above definition of PDk let LGDk ∼ U(0.5, 1) and EADk ∼
U(0, 1) independently for every sector k.

• Sample the intra-sector correlation parameters rk(n) uniformly from the
interval (0.3, 0.6).

For each constructed portfolio P ∗ calculate 100′000 Monte-Carlo samples of LP∗

to estimate VaRmf
q (LP∗).

Let us comment on the first results. In figure 2 a 2D plot is presented, where
each point corresponds to one of 280 artificially constructed portfolios, showing
each portfolio β̄ and CDI. Comments on figure 2:

• The more sectors there are, the “easier” it is to achieve higher diversifica-
tion level, subsequently lower CDI.

• Having one dominant sector among several can still lead to high CDI and
little diversification effect. Red dots cover wide range of CDI, from 0.5,
which is the lower bound for K = 2, and almost up to 1. For instance, red
portfolios with CDI values of around 0.9 possess one dominant sector in
terms of loan exposure sizes (1/CDI ≈ 1.1).

In figure 3 we present the full result picture stemming from steps 1-10 from
subsection 4.3. Every dot corresponds to a portfolio with its CDI, β̄ and DF,
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Figure 2: Example 1. Coloured dots are 280 portfolios, each 1000 loans. Loans of
each portfolio are distributed across K many sectors. Each portfolio is described
by two diversity capturing measures: capital diversification index (CDI, (37)
with VaR instead of EC) and the average cross-sector correlation β̄ (equal to
β from (14) as by remark 4.6). Plot visualizes results of step 8, subsection 4.3.
A portfolio composed of loans from more sectors is more likely to show better
diversity characteristics, i.e., lower CDI and β̄ values.

(43). Dot color shows number of sectors in the portfolio (see color legend). This
data cloud can be used to perform regression analysis as in step 11, subsection
4.3. One can see that portfolios consisting of one sector loans (black dots) show
no diversification effects (DF ≈ 1). As expected, DF is increasing in β̄ and CDI.

Remark 4.7. The choice of the sampled parameter distribution (hence sampling
interval) is usually based on historical data. For instance, a common case is
when the probabilities of default lie in the range of 1% to 7.5%. Sometimes risk
managers use rating agency data and assign to each rating level some default
probability. If one has a strong belief in some characteristics of prospective real
life portfolios, these assumptions can be taken into account and incorporated
into the sampling intervals of different risk parameters, subsection 4.3, steps 2-4,
e.g. shifting bounds of uniform distribution. Note that in general correlation of
two different asset returns, (13), can be negative, for instance, prices for bonds
issued by a gold mining company may rise during financial crisis. Yet the philos-
ophy of splitting loans into sectors suggests to combine highly correlated loans
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Figure 3: Example 1. Diversification factor (DF, (43)) of each portfolio from
figure 2. DF of a portfolio is the ratio between simplified ASRF model VaR
value VaR1f , (34), and the full multi-factor model VaR value VaRmf, estimated
using Monte-Carlo approach. Diversity capturing measures CDI and β̄ as in
figure 2. Multi-factor VaR is lower than VaR1f for portfolios, that provide some
diversity (CDI < 1 and |β̄| < 1). DF decreases with decreasing CDI and β̄
values.

in one sector and to have presumedly low correlation for loans from different
sectors. Due to this we usually sample rk with positive values.

Remark 4.8. The assumption of homogeneous distribution of loans across sectors
(thus having ≈ N/K loans per sector) is not a restrictive assumption. If one
works with portfolios, in which several dominant loans and many small loans
are likely to occur, i.e. with high CDI, the sampling procedure for EADs can
be changed to, for instance,

EADn = ean , where an ∼ U(0, 10). (45)

Example 2. Left hand side plot in figure 4 presents similar result to fig-
ure 2, but with risk parameters PD, EAD and LGD simulated on a loan level,
i.e., individually for every loan. As one can observe, portfolios are concentrated
more closely to the their CDI lower bounds, 1/3, 1/2 and 1 for K = 1, 2, 3,
respectively. The reason for that is the high loan number, which results in rela-
tively homogeneous total exposure size of each sector loans. This is important
to consider, since with this DF parametrization setup we certainly obtain gaps
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between simulated portfolios of different total number of sectors. For instance,
VaRmf estimation of a 3 sector portfolio, which contains one dominant sector
and has CDI of ≈ 0.8, can be very poor if one uses DF based on figure 4 simu-
lations.

The right hand side plot in figure 4 is based on the same framework as the
left hand side plot, but with a different choice of EADs, (45). (45) certainly
results in relatively wider exposure size spread across the loans. We do observe
several blue points with CDI > 0.4 and more red points around CDI ≈ 0.6,
which is not the case in the left plot of figure 4, but it still would need dozens
of portfolio simulations to cover β̄-CDI surface more homogeneously.
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Figure 4: Example 2. Coloured dots are 280 portfolios, each 1000 loans. Loans of
each portfolio are distributed across K many sectors. Each portfolio is described
by two diversity capturing measures: capital diversification index (CDI, (37)
with VaR instead of EC) and the average cross-sector correlation β̄ (equal to
β from (14) as by remark 4.6). Plot visualizes results of step 8, subsection 4.3.
In contrast to Example 1, loan exposures at default (EAD), losses given default
(LGD) and probabilities of default (PD) are sampled individually for every loan
instead of sector. On the left: EADn ∼ U(0, 1). On the right: EADn as in (45).
Sampled portfolios are concentrated close to their CDI lower bounds, ≈ 1/K,
even for (45). As a results, poor coverage of the surface for CDI ∈ (1/3, 1).

Example 3. Figure 4 showed that (45) has little effect in case EADs are
sampled on a loan level. The reason is that big exposure size portfolios are likely
to appear in every sector. This would induce problems to reasonably cover unit
square of CDI × β̄ plane. One can fix that by sampling EADs using (45) on
a sector level, as in Example 1. This increases the likelihood of getting one or
several dominant sectors, thus obtaining representatives with wider variety in
CDI. Figure 5 confirms this reasoning. The top left plot of figure 5 visualizes
first 140 portfolio simulations and additional 140 portfolios are added in each
following plot from left to right, top to bottom.
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Figure 5: Example 3. Each portfolio (coloured dot) is described by two diversity
capturing measures: capital diversification index (CDI, (37) with VaR instead
of EC) and the average cross-sector correlation β̄ (equal to β from (14) as by
remark 4.6). Plot visualizes propagation of artificially sampled portfolios in the
CDI-β̄ plane (as the number of sampled portfolios increases) using subsection
4.3 scheme. Exposure sizes (EAD) sampled on a sector level, using (45). Now
high CDI value portfolios appear more often even in case K = 3. Better surface
coverage (for CDI ≥ 0.4) compared to figure 4.

Example 4. Let us choose single macro factor systematic risk model (14)
and randomly simulate number of sectors for each portfolio in the range K ∈
{2, 3, . . . , 12}. Let the total number of loans be fixed, N = 1200, which are
homogeneously distributed across all sectors in particular portfolio setup, i.e.,
≈ N/K loans per sector. Risk parameters are simulated using the corresponding
distributions for β, PD, EAD, LGD and rk(n) of Example 1 on the sector level.
Sector level exposures EADk for every sector k are normalized to wn, (5). 10′000
portfolios are simulated. In figure 6 VaRmf is estimated using 100′000 Monte-
Carlo simulations, whereas in figure 8 500′000 Monte-Carlo simulations (thus
additional 400′000 samples of the loss variable LP , (1), for every portfolio P )
are used. Observe that in figures 6 and 8 CDI of the artificial portfolios do not
fall below ≈ 1/12. The reason is the maximum sector K = 12, which implies a
CDI lower bound of 1/12 for any related portfolio. Denote by DFS and DFB the
DF parametrizations stemming from two cases, which are visualized in figures
6 and 8, respectively.

DFS =1.0083− 0.92159(1− CDI) · (1− β̄) + 0.10614(1− CDI)2 · (1− β̄)

+ 0.44788(1− CDI) · (1− β̄)2 − 0.44431(1− CDI)2 · (1− β̄)2 (46)
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Figure 6: Example 4. Diversification factor DFS , (46), surface plot obtained
using parametrization model (44) based on 10′000 simulated portfolio data,
represented with blue stars on the right. VaRmf of each portfolio is estimated
using Monte-Carlo approach with 100′000 corresponding loss variable L, (1),
samples. Diversity capturing measures: capital diversification index (CDI, (37)
with EC replaced by VaR) and the average cross-sector correlation β̄ (equal to
the sampled inter-sector correlation β, (14), as by remark 4.6). DF increases
for higher CDI and β̄ values.
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Figure 7: Example 4. Rotated DFS , (46), surface from figure 6.

DF parametrization (46) shows 0.988 adjusted R2 statistics and less than 2e−09
p-value for all parameters a0 and aij (see step 11., subsection 4.3).

DFB =1.0081− 0.91883(1− CDI) · (1− β̄) + 0.10361(1− CDI)2 · (1− β̄)

+ 0.44502(1− CDI) · (1− β̄)2 − 0.44117(1− CDI)2 · (1− β̄)2 (47)
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Figure 8: Example 4. Diversification factor DFB , (47), surface based on
parametrization (44) using 10′000 simulated portfolio data. Each portfolio rep-
resented with a blue star and its VaRmf is estimated using Monte-Carlo approach
with 500′000 corresponding loss variable L, (1), samples. Definitions of CDI and
β̄ the same as in figure 6. DFB surface shape is close to figure’s 6. To provide
a wider overlook, a different angle perspective is offered. Figures 9 and 10 cap-
ture the impact of the increased number of Monte-Carlo samples on the DFB
parametrization compared to DFS , (46).

DF parametrization (47) shows 0.992 adjusted R2 statistics and less than 5e−12
p-values for all parameters a0 and aij (see step 11., subsection 4.3).

To present the difference of DFS and DFB , we construct a 100 × 100 test
point grid in the β̄-CDI [0, 1]2 surface and compare the two DF. Let us study
the ratio DFS/DFB , visualized in figure 9. Ratio has mean 1, median 1.001 and
standard deviation 1.6141e-04. Maximum and minimum observed ratio values
are 1.0002 and 0.9984, respectively. Figure 9 shows that in more than 65% of
the cases the ratio is above 1, meaning that DFB usage results in smaller capital
requirements. Still we observe much wider spread of values to the left of 1. In
figure 10 we colour blue the grid points with DFS/DFB ≥ 1.

One should not get confused from the following observation. From figures
9 and 10 we conclude that for less diversified portfolios, i.e., higher CDI and
β̄ values, DFB , (47), imply lower capital requirements in terms of VaR. One
may find this result counterintuitive, since (35) implies smaller VaRmf using
500′000 samples instead of 100′000, whereas in contrast to that less diversified
portfolios tend to have heavier tail distributions, as shown in section 6, and one
may expect VaRmf to slightly increase with increasing number of samples. This
observation is not justified because, first of all, we do not get an equality (35), as
discussed earlier in subsection 4.2. Secondly, as shown in figure 6 and 8, most of
the artificially constructed portfolios fall into the white region and around the
white-blue boundary of figure 10. This implies that actually the white region
of figure 10 is densely presented with artificial portfolios and the blue region of
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Figure 9: Example 4. Value appearance frequency histogram of the ratio
DFS/DFB , based on 100 × 100 point-grid on the [0, 1]2 square in the CDI-β̄
(step 8, subsection 4.3) plane. Diversification factor parametrizations defined
in (46) and (47), respectively.

the same figure is more of a nonlinear regression result and one should try to
avoid using DFB or DFS for that region portfolios. See Example 5 for related
discussion. In particular, VaRmf estimations based on larger samples need to
be taken as a reference. All in all, this implies that we consider DFB as a refer-
ence for DFS and conclude that DFS underestimates the multi-factor VaR for
well-diversified portfolios and overestimates it for less-diversified portfolios.

This example motivates to consider improved Monte-Carlo methods, in order
to increase the estimation quality and reduce its variance without significantly
increasing computational time. For instance, DFB (47) calculation took ap-
proximately 34 hours on the ETH Zürich supercomputer Brutus. See section 7
for variance reduction methods to improve MC performance and a description
of the ETH Zürich supercomputing infrastructure.

Example 5. In this example we present the impact of the inter-sector
correlation matrix on the DF parametrization procedure. Intuitively it is clear
that a good prior estimation of the risk parameter distributions, sector types
and the related correlations (inter-sector correlation matrix) of the prospective
portfolios is important to achieve better VaRmf estimations. Knowing these
characteristics allows us to simulate less portfolios, thus reduces computational
time without increasing the error. This is due to the fact that the artificially
simulated portfolios will be concentrated in the region where one expects to
have future portfolios. Mathematically expressed, let the systematic risk factor
model be defined as in (16). Let the total number of sectors be K = 12 and
Θ1,Θ2,Θ3,Θ4 ∈ RK×K represent 4 different inter-sector correlation matrices2.

2See Appendix A for explicit Θi representations, i = 1, 2, 3, 4.
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Figure 10: Example 4. A supplement to histogram from figure 9. Blue zone
corresponds to the region with DFS/DFB ≥ 1. The diversification effect of
DFS is overestimated for well-diversified portfolios and underestimated for less
diversified portfolios.

Let us introduce additional names nCorr for Θ1, lCorr for Θ2, mCorr for Θ3

and hCorr for Θ4 to identify the underlying no-, low-, medium- or high relative
correlation level across K sectors, respectively. Recall that the parameters αij
in equation (16) stem from the lower triangular Cholesky decomposition of the
inter-sector correlation matrix, for i, j = 1, 2, . . . ,K. Let the risk parameters be
simulated as in Example 1. In figure 11 we visualize the results of steps 3.-10.
from subsection 4.3, i.e., artificially constructed portfolios that are afterwards
used for DF parametrization.

First comment on figure 11 is that the average cross-sector correlation β̄,
(42), can be also negative. We did not see this in previous examples due to
discussion in step 11 of DF parametrization, subsection 4.3., and Remark 4.7.
Second comment concerns the yellow point cloud, which is concentrated on
β̄ = 0 line. This is clear because nCorr is an identity matrix, thus there is no
linear dependence, i.e. correlation, across sectors. Thirdly, in relatively extreme
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Figure 11: Example 5. Plot visualizes the impact of an inter-sector correlation
matrix on the portfolio simulation results. Matrices xCorr, x ∈ {h, m, l, n}
explained in Appendix A. Total number of sectors is K = 12 for all portfolios,
equal to the dimension of each matrix. Multi-factor adjustment diversification
factor DF defined in (43), capital diversification index CDI and the average
cross-sector correlation β̄ as in (37) and (42), respectively (with VaR instead of
EC). Observe the impact of the matrix dependent systematic risk factor model
(16) on the localization of portfolios in the CDI-β̄ plane. Important to consider
in order to exclude an application of, for instance, DF, (44), based on hCorr

data cloud on a well-diversified real-life portfolio (with low β̄ and CDI values).

cases of lCorr or hCorr we observe that the artificial portfolios are densely con-
centrated in specific regions, especially in contrast to mCorr portfolios, which
capture wide spread of β̄ and CDI combinations. The impact of hCorr and
lCorr portfolios on DF parametrization, step 11. from subsection 4.3, can be
observed in figure 12. The difference can be clearly seen without additional
calculations. As a result, clearly a high precision in multi-factor VaR estima-
tion via hCorr DF will be achieved for portfolios, which fall in hCorr artificially
sampled portfolio region. Whereas, for instance, it would be unsatisfactory to
estimate VaRmf for a portfolio with β̄ = 0.7 using lCorr DF parametrization,
because we had no artificial portfolios there to impact the regression analysis
and hence the DF.

Example 6. In this example we present a DF parametrization based on
50′000 portfolio sample. The resulting DF will be considered as a reference
result and used later in the thesis for comparison purposes. We consider it as a
reference result in the sense of, firstly, having greatest number of sampled port-
folios (used for DF parametrization) among all previous examples and, secondly,
we do not a priori specify portfolio sampling scheme to some strict contexture,
thus our aim is to represent the whole unit square [0, 1]2 in the CDI× β̄ plane.
We choose ECmf, (28), with q = 99.9% as a risk measure for this example,
thus in contrast to previous examples, where DF was a ratio VaRmf/VaR1f.
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Figure 12: Example 5. Multi-factor adjustment diversification factor (DF) sur-
face plot, (44), based on artificial portfolios stemming from the asset returns
model (13) with systematic risk factors (16) defined by inter-sector correlation
matrices hCorr and lCorr. Each case data clouds used for DF parametrization
(step 11, subsection 4.3) are visualized in figure 11. Clearly surface shapes are
different, thus it is important to know whether the artificially sampled data
(used for DF parametrization) and the DF parametrization function model rea-
sonably represents characteristics of a real life portfolio in order to allow its
application.

Each portfolio consists of K = 12 sectors, 100 loans per sector. Systematic risk
model (14) is used. All risk parameters are calculated in the same way as in
Example 1. The only difference concerns EADk of every sector. As Example
2 has shown, this EAD sampling approach would lead to high concentration of
well-diversified portfolios close to 1/12. To better capture wide ranges of CDI,
for each portfolio a random number γ is sampled from the multinomial distri-
bution with range {0, 1, . . . , 11} with equal occurrence probabilities for every
outcome. Then first γ sector exposure sizes are multiplied by Γ ∼ U(1, 100).
Thus we impose relative size dominance to first γ sectors. Finally, VaRmf

q is
estimated using crude MC with 250′000 samples. See figure 13 for the resulting
plot. Resulting parametrization function is

DF =1.0082−−0.74533(1− CDI) · (1− β̄)− 0.26594(1− CDI)2 · (1− β̄)

+ 0.39918(1− CDI) · (1− β̄)2 − 0.33344(1− CDI)2 · (1− β̄)2 (48)

and has adjusted R2 statistics level of 0.992.

4.7 Summary

In this section a scaling factor DF was introduced to correct for the multi-factor
VaR of a portfolio, given its ASRF approximation. We began section 4 with the
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Figure 13: Example 6. Resulting diversification factor (DF) parametrization
surface (48), based on 50′000 simulated portfolios. Blue dots are the sampled
portfolios. Each portfolio is described by two diversity capturing measures: cap-
ital diversification index (CDI, (37) with VaR instead of EC) and the average
cross-sector correlation β̄ (equal to β from (14) as by remark 4.6). This sim-
ulation has the best unit square surface portfolio coverage in the CDI-β̄ plane
(compared to previous simulations), hence the related DF parametrization, (48),
will be used for further comparison studies.

description of DF and theoretical motivation. The final result is the presented
DF parametrization scheme in subsection 4.3. Due to many assumptions con-
cerning portfolio construction and risk parameter sampling procedures, steps
1-4, we provided different examples in section 4.6. This influences the distribu-
tion of artificial portfolios in the CDI× β̄ plane, which is of particular interest
for the user. In its turn, artificial portfolios influence the result of a non-linear
regression, when finally parametrizing DF as a function of CDI and β̄. One
would like the real life portfolio to land in the region, which was represented
reasonably dense, thus it is important to know how to sample.

Example 1 provided quick results and developed first impression of the pro-
cedure. Apart from number of sectors and loans (often larger in practice), other
risk parameter sampling distributions are close to ones, that are often used in
practice.

We discuss the question of efficient portfolio sampling in the sense of cover-
ing wide ranges of CDI and β̄ in Examples 2 and 3. The important take-away
of this example is that under loan level EAD sampling it is difficult to obtain
portfolios, which land far from their CDI lower bound, thus show dominance in
one or several sectors.

VaRmf relies on Monte-Carlo estimation, which may show high variance.
Apart from that, Monte-Carlo estimations are very time consuming, implying
a trade-off between precision and computational time. We study the impact of
increased number of MC sample on DF in Example 4. We noticed that in our
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setup less-diversified portfolio VaR is overestimated by DFS , (46).
Main point of Example 5 is the change of systematic risk model to (16).

This, in its turn, results in a heavy dependence on the sector definitions and
related correlation matrices Θ.

For the later comparison purposes we constructed DF, (48), based on biggest
number of simulations that we have performed in context of this thesis under
[1] methodology. The approach and results are described in Example 6.
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5 Düllmann et al. methodology

In this section we review a different analytical approach for estimating credit risk
capital defined in terms of VaR or ES of the credit portfolio loss variable L, (1).
This, of course, includes the EC case, since E[L] can be computed analytically.
Similarly to Cespedes et al,[1], the goal is to construct an estimator which also
recognizes the concentration risks. The approach is also based on the ASRF
model and introduces additional granularity adjustment terms within the multi-
factor Merton framework. The methodology is based on the 2nd order Taylor
expansion of VaR(L) around the limiting portfolio loss variable from the ASRF
model. It was first introduced by Pykhtin, [8], and then partly simplified and
revisited by Düllmann et al., [3], in order to achieve a decrease in the underlying
computational time. We begin this section with the general setup and follow
[8]. In the second subsection we switch to [3], describing the difference in the
approach compared to [8].

5.1 Basic Pykhtin setup

As before, let us have N different borrowers, one loan per borrower, and we
suggest to have them split across K sectors. Let L̄ denote the portfolio loss (1)
given one-factor credit risk model.

The limiting loss (as N →∞) can be written using Theorem 3.5. as

L̄ = µ(Ȳ ) =
∑
n

wn · LGDn · PDn(Ȳ ) (49)

where Ȳ represents the single systematic risk factor and

PDn(y) = Φ

(
Φ−1(PDn)− sny√

1− s2
n

)
. (50)

We want to establish connection between one-factor model, in particular be-
tween sn and the multi-factor model’s factor loadings rn. A desirable property
would be to relate L̄ to the true loss variable L such that

L̄ = E[L|Ȳ ]. (51)

Using Proposition 2.5. and the definition (49) we know that

VaRq(L̄) = µ(Φ−1(1− q)). (52)

Let the full multi-factor setting be defined by (1) (normalized version with wn
instead of EADs) and (13) with (16). In order to get (51), we first assume that

Ȳ =
∑
k

bkZk (53)

and set
Yk(n) = %nȲ +

√
1− %2

nεn (54)
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where εn are independent, standard normal,
∑
k b

2
k = 1 to preserve unit variance

on Ȳ and %n are chosen such that

%n = Corr(Yk(n), Ȳ ) =
K∑
k=1

αnkbk. (55)

Having (54), we can rewrite (13) as

Xn = rn%nȲ +
√

1− (rn%n)2 ξn, (56)

where, as before, ξn are iid standard normal, independent of Ȳ . For the condi-
tional expectation this means

E[L|Ȳ ] =

N∑
n=1

wn · LGDn · Φ

(
Φ−1(PDn)− rn%nȲ√

1− (rn%n)2

)
. (57)

Condition (51) holds if and only if the following restriction for the effective
factor loadings sn (recall (49) and (50)) holds

sn = rn%n = rn

K∑
k=1

αnkbk for all n ∈ {1, 2, . . . , N}. (58)

As mentioned before, αnj = αk(n)j for j = {1, 2, . . . ,K} and n ∈ {1, 2, . . . , N}.

Assumption 5.1. In the following we assume that (58) holds.

5.1.1 Choice of bk, equation (53)

Recall the condition (58). rn are assumed to be fixed, αij , i, j = 1, 2, . . . ,K are
entries of the lower diagonal Cholesky decomposition matrix of the correlation
matrix Θ. But there is a variety of bk satisfying (58). To minimize the difference
between VaRq(L̄) and VaRq(L) we choose bk in a way to maximize the correla-
tion between Ȳ and Yn for all n. A correlation close to one suggests that the
single-factor and the multi-factor model incorporate similar movements, thus
dependence on changing state of information. This reduces difference between
the quantiles of L̄ and L. Mathematically expressed, Pykhtin, [8], suggests to
choose bopt = (bopt

1 , bopt
2 , . . . , bopt

K ) such that the following maximization problem
is solved

bopt = arg max
b

N∑
n=1

(
αnbT

)
dn such that bbT = 1, (59)

where αn = (αn1, αn2, . . . , αnK). We can solve this problem by introducing
Lagrange multiplier via defining

Λ(b, λ) =
N∑
n=1

(
αnbT

)
dn − λ

(
bbT − 1

)
.
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Partial derivations leads to a system of K + 1 equations

∂Λ

∂bk
=

N∑
n=1

dnαnk − 2λbk
!
= 0 for all k (60)

∂Λ

∂λ
=

K∑
k=1

b2k − 1
!
= 0. (61)

Solving (60) for bk gives bopt
k ,

bopt
k =

∑N
n=1 dnαnk
λ′

(62)

where λ′ = 2λ is chosen such that bbT = 1.
Note that the maximization problem introduced additional parameters dn.

After doing empirical tests, [8] concluded that the choice

dn = wn · LGDn ·

(
Φ−1(PDn)− rnΦ−1(q)√

1− r2
n

)
(63)

is one of the best performing.

5.1.2 Perturbation of the loss variable L

So far we have constructed a random variable L̄ such that its quantile VaRq(L̄)
can be calculated analytically and is close to VaRq(L). Let us define the dif-
ference between L̄ and L as a perturbation term U = L − L̄. A perturbation
variable

Lε = L̄+ εU = L̄+ ε(L− L̄)

describes the scale of perturbation. Now the idea is to expand VaRq(Lε) in
powers of ε around L̄ and evaluate at ε = 1. This yields

VaRq(L) = VaRq(L̄) +
dVaRq(Lε)

dε

∣∣∣
ε=0

+
1

2

d2VaRq(Lε)

dε2

∣∣∣
ε=0

+O(ε3). (64)

Let us now investigate each term. We know the analytical expression for the
zero order term from (52). The first derivative equals

dVaRq(Lε)

dε

∣∣∣
ε=0

= E[U |L̄ = VaRq(L̄)] = E[U |Ȳ = Φ−1(1− q)], (65)

where we used (52) and (49) to establish second equality. Note that by con-
struction of L̄, (51), E[U |Ȳ ] = 0. Hence the first order term in (64) vanishes for
any q.

The second order term can be expressed as

d2VaRq(Lε)

dε2

∣∣∣
ε=0

= − 1

fL̄(VaRq(L̄))
· d
dl

(
fL̄(l) · σ2

U |L̄=l

) ∣∣∣
l=VaRq(L̄)

, (66)
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where σ2 stands for the variance and fL̄(l) is the probability density function
of L̄, (49). Since L̄ = µ(Ȳ ) is deterministic and monotonically decreasing in Ȳ ,
the conditional variances of L and U are equal, i.e.,

σ2(y) = σ2
L|Ȳ=y = σ2

U |Ȳ=y. (67)

Substituting l = µ(y) in equation (66), we get

d2VaRq(Lε)

dε2

∣∣∣
ε=0

= − 1

φ(VaR1−q(Ȳ ))
· d
dy

(
φ(y) · σ

2(y)

µ′(x)

) ∣∣∣
y=VaR1−q(Ȳ )

, (68)

where φ(y) is the probability density function of a standard normal random
variable. Inserting (68) into equation (64) yields the correction term

∆VaRq = VaRq(L)−VaRq(L̄)

= − 1

2µ′(VaR1−q(Ȳ ))
·
[
d

dy
σ2(y)− σ2(y)

(
µ′′(y)

µ′(y)
+ y

)] ∣∣∣
y=VaR1−q(Ȳ )

,

(69)

where we used that the first order term is equal to zero and φ′(y)/φ(y) = −y.
For the full derivation of the first and second order terms see [15]. (69) is the
key term of this methodology. It adjusts for the multi-factor and single-factor
limiting loss distribution difference and also corrects for the finite loan number.

5.1.3 Quantile correction term ∆VaRq

In this subsection we derive an explicit formula for the adjustment term ∆VaRq,
(69). For that we need to determine the conditional mean and variance of the
loss L given Ȳ = y. µ′(y) and µ′′(y) can be obtained from (49). Since the asset
returns Xn are independent conditionally on {Z1, . . . , ZK}, we can decompose
σ2(y) in the following way

σ2(y) = Var[E[L|Z1, . . . , ZK ]|Ȳ = y]︸ ︷︷ ︸
σ2
∞(y)

+E[Var[L|Z1, . . . , ZK ]|Ȳ = y]︸ ︷︷ ︸
σ2
Ga(y)

. (70)

σ2
∞(y) stands for the variance of the limiting loss distribution (20) conditional

on Ȳ = y. It captures the difference between the multi-factor and the single-
factor limiting loss distribution. This fact is accentuated by the result that the
first variance term disappears if the single systematic factor Ȳ is equal to the
independent factors {Z1, . . . , ZK}.

Theorem 5.2. The conditional variance term σ2
∞ is given by

σ2
∞ =

N∑
n=1

N∑
m=1

wnwmLGDnLGDm·

·
[
N2(Φ−1(PDn(y)),Φ−1(PDm(y)), %Ȳnm)− PDn(y)PDm(y)

]
(71)
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where N2(·, ·, ·) is a bivariate normal distribution and %Ȳnm is the asset correla-
tion between asset n and m conditional on Ȳ . Moreover, the derivative of σ2

∞
is given by

d

dy
σ2
∞ = 2

N∑
n=1

N∑
m=1

wnwmLGDnLGDm · PD′n(y)·

·

Φ

Φ−1(PDm(y))− %ȲnmΦ−1(PDn(y))√
1− (%Ȳnm)2

− PDm(y)

 , (72)

where PD′n(y) denotes the derivative of PDn(y) with respect to y.

Remark 5.3. %Ȳnm can be calculated by exploiting equation (13) and the defini-
tions of Ȳ and Yn, in particular

Xn = sn · Ȳ +
K∑
k=1

(rnαnk − snbk) · Zk +
√

1− r2
nξn.

Conditions sn = rN%n, (58), and
∑
k b

2
k = 1 yield

%Ȳnm =
rnrm

∑K
k=1 αnkαmk − snsm√

(1− s2
n)(1− s2

m)
.

The second term, σ2
Ga(y), accounts for the granularity and captures the

difference between finite and infinite number of loans in the portfolio. It vanishes
for N →∞, given that

∑
n w

2
n → 0 a.s.

Theorem 5.4. σ2
Ga(y) is given by

σ2
Ga(y) =

N∑
n=1

wn·[LGD2
n · [PDn(y)

−N2( Φ−1(PDn(y)), Φ−1(PDn(y)), %Ȳnn)]] (73)

and its derivative

d

dy
σ2
Ga(y) =

N∑
n=1

wn · PD′n(y) · (LGD2
n·

· [1− 2Φ

Φ−1(PDn(y))− %ȲnnΦ−1(PDn(y))√
1− (%Ȳnn)2

]). (74)

For the proofs of Theorems 5.2. and 5.4. see [10].

Remark 5.5. The general portfolio model and hence Theorems 5.2. and 5.4. can
be easily extended to the case with random LGDs, conditionally independent
of Xns given Z1, . . . , ZK . For this extension and related proofs see [10]. We
assume fixed LGDs in this paper (recall subection 2.1).
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Due to the linearity of the adjustment term (69), we can rewrite it in the
following way

∆VaRq = ∆VaR∞q + ∆VaRGa
q , (75)

where each term includes the corresponding conditional variance and its deriva-
tive from Theorems 5.2. and 5.4., respectively for ∆VaR∞q and ∆VaRGa

q .

5.1.4 Expected Shortfall case

Another risk measure, the Expected Shortfall (ES), is also addressed in [8]. As
already mentioned (recall subsection 2.2), in contrast to VaR the ES evaluates
the average loss that exceeds some fixed level VaRq(L), (11).

We know from subsections 5.1.1-5.1.3 how to calculate VaRq(L) for any
confidence level q. Thus it can be integrated this into the general ES formula
(12) and afterwords numerical integration can be applied. Yet [8] suggests to
substitute the quantile of the form VaRq(L) = VaRq(L̄) + ∆VaRq into (12) and
this leads to

ESq(L) = ESq(L̄) +
1

1− q

∫ 1

q

∆VaRsds︸ ︷︷ ︸
∆ESq

, (76)

where the first term is the ES of the comparable one-factor portfolio (established
in the beginning of subsection 5.1 and 5.1.1) and the second term is the ES
multi-factor adjustment.

Assumption 5.6. Recall that dn, equation (63), depend on the level q. This
implies the dependence of the factor loadings sn, (58), on the level q. Pykhtin,
[8], suggest to redefine {bk}k to be equal for all percentile levels above q and, in
particular, equal to {bk}k defined according to equation (62) with the confidence
level fixed at q for all greater confidence levels.

We want to calculate the terms of (76) under the Assumption 5.6. Using
(49), we can rewrite (11) as

ESq(L̄) = E[µ(Ȳ )|Ȳ ≤ Φ−1(1− q)] =
1

1− q

∫ Φ−1(1−q)

−∞
µ(y)φ(y)dy (77)

To find ∆ESq, we recall that ∆VaRq equals one half of the second derivative of
VaR, (64) (recall that the first derivative vanishes). Using (68), ∆ESq can be
rewritten as

∆ESq = − 1

2(1− q)

∫ 1

q

1

φ(y)
· d
dy

(
φ(y) · σ

2(y)

µ′(y)

) ∣∣∣
y=Φ−1(1−s)

ds, (78)

where all terms are defined as in the VaR case. Since (78) is linear in conditional
variance σ2(y), ∆ESq can also be represented as the sum of two adjustment parts

∆ESq = ∆ES∞q + ∆ESGa
q ,

similarly to VaR case, (75).
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5.1.5 Summary

In this section we reviewed analytical approximation methodology for VaRq(L)
proposed by [8].

We began with the construction of a single-factor model for L̄, (49). To
closely reflect the multi-factor model (composed of (1), (13) and (16)) in the
sense of minimizing the difference between VaRq(L) and VaRq(L̄) we discussed
in subsection 5.1.1 special conditions for bk, (62). Having derived this approx-
imative variable L̄, we studied the difference between VaRq(L) and VaRq(L̄).
For that we applied Taylor expansion and derived explicit formulas for the first
two expansion terms (whereas the first term was shown to vanish by construc-
tion). This gave rise to the quantile correction term ∆VaRq, (69), which was
described in a greater detail in subsection 5.1.3. Having established all neces-
sary results for VaR, we applied them for the ES case. All of this gives us an
explicit methodology to analytically approximate credit risk capital determined
via VaR, ES or EC for any portfolio, assuming the underlying multi-factor asset
return model and the loss variable as in section 5.

5.2 Düllmann et al. modification of Pykhtins approach

[3] suggest a simplified version of [8] with a main motivation to further reduce
the computational burden. This is achieved by requiring the input parameters
as EAD and PD from (1) only on a sector level. Whereas this sector level PD
homogeneity assumption is usually not met in the real life credit portfolios, [3]
justify their simplification with numerical examples with good approximation
results.

Mathematically expressed, new L̄ is defined on a sector level (compare to
(49))

L̄ =
∑
k

wk · LGDk · PDk(Ȳ ). (79)

where, if one wants to relate it to the loan level case, wk is the sum of wn
for n ∈ Sector k and LGDk is set to the average of LGDn for n ∈ Sector k.
One can actually interpret the new framework as if having a portfolio consisting
of K sectors with one loan per sector and then applying straightforward [8]
methodology for this “K loan” portfolio. Thus again the multi-factor VaR is
approximated via a VaR for a single-factor model (79) and by adding ∆VaR,
(69).

5.3 Testing Düllmann et al. and Pykhtin methodologies

In this subsection the impact off the simplifying assumption of [3], discussed in
subsection 5.2, is studied. We want to compare the resulting VaR(L) approxi-
mation and in particular its building blocks, i.e., the one factor approximation
term VaR(L̄) and the adjustment terms ∆VaR∞ and ∆VaRGa, (75), obtained
either using purely [8], subsection 5.1, or [3]. The reference result in all simu-
lations is based on 2 million Monte-Carlo sample estimate, which we call crude
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Monte-Carlo estimate.
Let the loss variable be modelled as in (1) and choose the asset returns and

systematic risk factors models given by (13) and (16), respectively. Let us as-
sume that there are 12 sectors, K = 12, and assume each portfolio consists
of N = 1200 loans, thus 100 loans per sector. For the needs of experiment,
4 inter-sector correlation matrices Θ1, . . . ,Θ4 are constructed with entries de-
scribing correlation of the 12 sector performance indices. This, in particular,
implies ones on diagonal, i.e., θii = 1 for every i = 1, 2, . . . ,K, and that every
entry is bounded by one in its absolute value. Every Θi is also symmetric and
positive-definite.

We begin with one portfolio, simulated as in Example 2, subsection 4.6, with
(45) and normalize EAD, (5). This portfolio is coupled with 4 different inter-
sector correlation matrices nCorr, lCorr, mCorr and hCorr from Example 5,
and the VaR0.999 is estimated using Pykhtin methodology, [8], Dülmmann et al,
[3], and crude Monte-Carlo based on 2 million samples. Results are summarized
in Table 1.

Table 1: Negative effect of sector level aggregation in Düll. Note that the
zero order term approximation L̄, (52), is the same under Düll and Pykh. The
adjustment terms are calculated using equation (69) and Theorems 5.2. and
5.4. for ∆VaR∞ and ∆VaRGa, respectively.

Method VaR(L̄) ∆VaR∞ ∆VaRGa VaR(L), (69)

nCorr

Pykh 0.0733 0.0048 0.0157 0.0939
Düll 0.0729 0.0056 0.2934 0.3719
crude MC 0.0930

lCorr

Pykh 0.0790 0.0044 0.0140 0.0975
Düll 0.0790 0.0053 0.2602 0.3445
crude MC 0.0972

mCorr

Pykh 0.1760 5.6316e-04 0.0072 0.1838
Düll 0.1792 8.2260e-04 0.1359 0.3160
crude MC 0.1845

hCorr

Pykh 0.2195 1.1703e-05 0.0065 0.2260
Düll 0.2249 9.4272e-05 0.1217 0.3467
crude MC 0.2262

Let us first comment on the performance of Düllmann et al. approach.
It certainly provides incorrect granularity adjustment term. Intuitively this is
clear since the term ∆VaRGa captures the difference between the finite and in-
finite number of loans in the portfolio. Thus, consolidating loans of each sector
into an average representative with an exposure size EADk =

∑
j∈Sector k EADj

harms the calculation, since in this case the granularity adjustment term basi-
cally responds to a K loan portfolio, where K << N . As simulations showed,
Düllmann tends to overestimate ∆VaRGa compared to Pykhtin and their rel-
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ative difference decreases as the number of sectors K increases. In figure 14
a fixed portfolio with varying sector classifications (resulting in different total
numbers of sectors K) is considered. Plot values are normalized with respect to
Pykhtin results, yielding constant value 1 for Pykhtin and showing the relative
granularity adjustment difference for Düllmann.
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Figure 14: The relative difference of granularity adjustment ∆VaRGa obtained
with Düllmann and Pykhtin approaches. Plot values are normalized with re-
spect to Pykhtin results individually for each K

N . Clearly ratio decreases as the
number of sectors K increases since sector aggregated portfolio converges to the
actual constellation.

In further experiments we use Düllamm approach but with the granularity
adjustment on a loan level. Such approach is also suggested by [12]. We abbre-
viate this methodology as PykhDüll.

Considering crude MC VaR(L) results as a reference, we see that Pykhtin
provides good results (bold results, table 1). Even more, since crude MC results
may slightly change from simulation to simulation (estimation variance due to
different random number sequences during numerical sampling), one can get
crude MC results even equal to Pykhtin. Another observation is the decreas-
ing size of the ∆VaR∞ as the overall dependence increases (expressed by Θi).
Intuitively this is expected, since having almost no correlation, lCorr, or no
correlation, nCorr, makes it difficult for a single systematic risk factor Ȳ , (53),
to capture and recreate the multi-factor dynamics. This, in its turn, implies
larger ∆VaR∞ terms. Vice versa, for highly correlated systematic risk factors,
an appropriate choice of bk, (62), makes Ȳ a better representative of the general
setup and thus implies smaller ∆VaR∞ terms.

5.4 Summary

In this section VaR or ES analytical approximation methodology [8] and its
simplification [3] was presented. Based on several test portfolios, we argued
against using sector level granularity adjustment in context of this thesis. As a
computational time versus precision dilemma consensus, a mix of a sector level
∆VaR∞ and a loan level ∆VaRGA was suggested. The corresponding approach
was denoted by PykhDüll.
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6 Comparison study of Cespedes and Düllmann
approaches

Although the name of the section states the comparison of methodologies pre-
sented in [1] and [3], we replace [3] by a symbiosis of [8] and [3] due to the
discussion of subsection 5.3. Sector level aggregation, introduced in [3], does
decrease computational time, but its application on a particular portfolio con-
struction, frequently used in this thesis, provided poor results. Examples are
presented in Table 1.

6.1 Performance test

For comparison purposes we construct one portfolio P̂ consisting of K = 12
sectors and 100 loans per sector. We consider model (16) for the systematic
risk and choose EC(L) = VaR0.999(L) − E[L] as the risk measure defining risk
capital. Let the risk parameters be chosen as follows:

• PDn ∼ U(0.03, 0.06) for every loan n,

• EADn ∼ U(10, 90) for every loan n,

• LGDn ∼ U(0.3, 0.8) for every loan n

• and rk ∼ U(0.4, 0.6) for every sector k.

This choice is based on the same reasoning as in Example 1, subsection 4.6. We
take the inter-sector correlation matrices Θ1, . . . ,Θ4 already used in Example
5. of subsection 4.6 and in subsection 5.3, also called as nCorr, lCorr, mCorr
and hCorr (described in Appendix A). This results in the following average
correlation β̄ (42):

• nCorr ⇒ β̄ = 0,

• lCorr ⇒ β̄ = 0.0159,

• mCorr ⇒ β̄ = 0.4264,

• hCorr ⇒ β̄ = 0.7177.

We manipulate with loan exposure sizes from P̂ to get 4 different portfolios in
terms of relative sector exposures, thus making some sectors dominant. The
reason for this is to construct portfolios which show wide range of CDI val-
ues. We call the resulting portfolios lCDI, mlCDI, mhCDI and hCDI. For the
definitions and intuitive interpretations of the names let us take lCorr as the
inter-sector correlation matrix. This then leads to:

• lCDI ⇒ CDI = 0.0844. Name stands for “low” CDI. lCDI is equal to P̂ .
1/CDI ≈ 11.8.
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• mlCDI ⇒ CDI = 0.1208. Name stands for “medium-low” CDI. mlCDI
constructed from P̄ by taking 20 ·EADn for all n from sectors k = 1, . . . , 8.
1/CDI ≈ 8.3.

• mhCDI ⇒ CDI = 0.1842. Name stands for “medium-high” CDI. mhCDI
constructed from P̄ by taking 30 ·EADn for all n from sectors k = 1, . . . , 5.
1/CDI ≈ 5.4.

• hCDI ⇒ CDI = 0.4775 Name stands for “high” CDI. hCDI constructed
from P̄ by taking 200 ·EADn for all n from sectors k = 1, 2. 1/CDI ≈ 2.1.

Thus we have 4 portfolios and 4 inter-sector correlation matrices, which gives 16
portfolio combinations capturing wide spread of CDI and β̄ values. Note that
after each manipulation with exposure sizes, we renormalize EADn to wn, (5).

The visualization of the different nature of portfolios is presented in figure
15 and 16. In figure 15 we plot the loss probability density functions for lCDI
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Figure 15: Approximation of the loss probability density functions of L, (1),
for different portfolio constellations. Higher average correlation across sectors
increases the probability of small losses and shifts more probability mass to the
tails.

under 4 different inter-sector correlation matrices. It is shown, that the density
peak is shifted to the left as the underlying average correlation increases and
in the same time more probability mass is shifted to the right tails. Whereas
in figure 16 we observe how increase in average sector correlation can be com-
pensated by a more homogeneous loan exposure size distribution. In both plots
it is clear that we deal with skewed probability densities and heavy tails. In
particular, heavy tails point at a significant difference in using VaR or ES, since
the loss of L exceeding some VaR level may vary extremely. This is one of the
main arguments for choosing ES instead of VaR as a risk measure in the defini-
tion of credit risk capital. This wide extreme value spread for L also motivates
for variance reduction techniques for credit risk capital (or equivalently the loss
measure) Monte-Carlo estimates, shortly discussed in section 7. Yet in our cal-
culations we stay with VaR, which is, first of all, widely used in the industry
(partly as a historical heritage and also due to simple statistical estimation)
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Figure 16: Approximation of the loss probability density functions of L, (1),
for different portfolio constellations. Homogeneously distributed loan exposure
sizes across sectors partly compensate increased correlation across sectors. Small
losses for a portfolio with two dominant sectors (hCDI) are still more likely
to occur even when the underlying sector dynamics are linearly independent
(nCorr).

and, secondly, is at the core of credit risk management both in Basel II and III,
[4] and [5] respectively.

Finally, we present the resulting Table 2, where crude MC based on 2 mil-
lion samples is compared to in subsection 5.3 introduced symbiosis of [8] and
[3], abbreviated as PykhDüll, and [1] results. DF parametrization as in (48),
Example 6, subsection 4.6. 2 million sample crude MC estimations are consid-

Table 2: Comparing PykhDüll and Düll. EC = VaR0.999 - E[L]. Most of the
Cesp results can be cosnidered as poor. Crude MC is the reference.

Method hCDI mhCDI mlCDI lCDI

hCorr

crude MC 0.2017 0.1742 0.1747 0.1754
PykhDüll 0.2018 0.1736 0.1752 0.1734
Cesp 0.2010 0.1731 0.1745 0.1720

mCorr

crude MC 0.2052 0.1454 0.1157 0.1253
PykhDüll 0.2047 0.1459 0.1142 0.1249
Cesp 0.2030 0.1435 0.1043 0.1132

lCorr

crude MC 0.1368 0.0709 0.0544 0.0449
PykhDüll 0.1340 0.0693 0.0534 0.0441
Cesp 0.1506 0.0739 0.0551 0.0452

nCorr

crude MC 0.1381 0.0672 0.0517 0.0412
PykhDüll 0.1347 0.0655 0.0503 0.0405
Cesp 0.1510 0.0705 0.0532 0.0427

ered as reference results. As Table 2 shows, most of the EC estimations based
on DF (48) can be interpreted as poor. More precisely, risk capital is overes-
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timated for relatively low average correlation portfolios, i.e., lCorr and nCorr

portfolios. Whereas it is mostly overestimated when the underlying sector de-
pendence structure given by mCorr and hCorr. One could consider this as a
serious drawback since less diversified portfolios involve higher risks and thus
their underestimation is particularly undesirable. Note that due to exposure
size normalization (5), EC is a ratio of the total portfolio. Thus, for instance,
0.001 increase in EC for a 100 million US dollar portfolio implies additional
100′000 US dollar risk capital, that a financial institution is obliged to put aside
as a risk buffer.

Clearly one can reach higher estimation precision using [1], when the un-
derlying DF parametrization stems from sampled portfolios, which are close to
the portfolio of interest, as discussed in Example 5, subsection 4.6. An example
is presented in Table 3, where we calculate DF based on only 5′000 portfolios,
which all follow (16) systematic risk model with inter-sector correlation matrix
nCorr, and using 100′000 samples for multi-factor VaR estimation of each port-
folio. But this precision is mostly achieved by knowing the prospective real life
portfolio configurations and also includes prediction of the inter-sector correla-
tions. If a company is able to describe its prospective portfolios in such a detail,
[1] can be a good risk management tool. As for PykhDüll, in most of the cases

Table 3: EC = VaR0.999 - E[L]. DF, (44), parametrization based on the modell
(16) nCorr data (yellow dots in figure 11). Obviously DF, that was suited for a
particular portfolio constellation, shows better precision.

Method hCDI mhCDI mlCDI lCDI

nCorr

crude MC 0.1381 0.0672 0.0517 0.0412
PykhDüll 0.1347 0.0655 0.0503 0.0405
Cesp 0.1503 0.0686 0.0512 0.0407

it performed better than Cesp. A good sign is that it showed higher precision
for heavy tailed portfolios. Of course, the main advantage of PykhDüll is its
generality applicability. With regards to computational requirements for a given
DF parametrization Cesp is much faster3 than PykhDüll. Yet to once obtain
DF itself, serious computational time needs to be invested.

6.2 Summary

To test the performance of PykhDüll and Cesp, 16 portfolios were created cov-
ering a range of CDI and β̄ values. DF parametrization was based on resuts
of Example 6, subsection 4.6. A crude MC approach was considered as a ref-
erence. In most of the cases Cesp showed poor estimation quality. We again
pointed at the importance of “reasonable” DF parametrization scheme in the
sense that one should avoid blind usage of DF for any portfolio constellation,

3Based on Matlab codes written for the purposes of this thesis.
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as discussed in context of table 3. Yet the relative ordering of credit risk values
for all portfolios under Cesp, [1], is consistent with PykhDüll and crude MC.
Since Cesp is the fastest among 3 methods, it can be considered as a good risk
management tool for fast evaluation purposes.
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7 Extensions

As discussed in section 4, Cespedes et al [1] methodology relies on Monte-Carlo
estimations. This approach can be immediately justified by the fact that in gen-
eral crude Monte-Carlo result is being used as a reference for any semi-analytic
or analytic credit risk capital approximation technique. The problem lies in the
time consuming crude MC calculations when many thousand portfolios need to
be considered. This forces a compromise between the MC sample size, number
of portfolios and loans. We have seen the impact of changing MC sample size
in Example 4 of subsection 4.6. Even more, high percentile level VaR or ES
require accurate estimation of low probability events of large losses. But the
normality assumption for the asset returns (13) and the corresponding depen-
dence mechanism makes it difficult to simulate such rare events. Furthermore, it
is difficult to simulate large losses for well diversified high-rated portfolios, i.e.,
low probablity events. Additionally to that, small sample size MC estimations
show high variance4. This motivates to either consider some variance reduction
techniques or to apply “brute” force - high performance computing. Several
variance reduction techniques as, for instance, anthithetic sampling or control
variates can be found in the literature, see [23] or [21]. One may also consider
low discrepancy sequences and quasi Monte-Carlo methods, [22], to improve
Monte-Carlo performance in some applications. Yet our problem framework is
well suited for another popular variance reduction technique, called importance
sampling.

In subsection 7.1 we introduce importance sampling technique, as by Glasser-
man and Li, [16], and provide related examples in subsection 7.2. We briefly
discuss high performance computing in subsection 7.3.

7.1 Importance sampling

In this subsection we present a two step importance sampling procedure for the
loss variable (1) under the systematic risk model (16).

In order to statistically estimate high percentile VaR or ES of a random
variable, it is good to have its samples and corresponding probabilities both
above and below the actual VaR level. Denote by px the Monte-Carlo estimation
of P (L ≥ x). Then we can decompose the variance of px to

Var(px) = E[Var(px|Z)] + Var(E[px|Z]), (80)

where Z = (Z1, . . . , ZK) from (16). To sample larger values of L, (1), we
manipulate the sampling Z and additionally transform the conditional default
probabilities PDn, which is a vector of conditional default probabilities PDn,
(18).

We begin with Var(px|Z) from (80). Conditional on Z, the asset returns (13)
are independent. To improve px estimation, we want to increase the default

4Note that the random number seed is reshuffled in every calculation.
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probabilities. For that we apply an exponential transformation

PDn,θ =
PDn · eθ EADnLGDn

1 + PDn(eθ EADnLGDn − 1)
(81)

for some θ ≥ 0. If θ > 0 then a larger related loss EADnLGDn indeed increases
the default probability. We compensate the change in default probabilities with
a likelihood ratio

exp(−θL+ ψ(θ)), (82)

where

ψ(θ) =
N∑
n=1

log(1 + PDn(eθ EADnLGDn − 1)) (83)

is the cumulant generating function of L. For any θ,

1{L≥x} exp(−θL+ ψ(θ)) (84)

is an unbiased estimator of px for L generated using PDn,θ. We choose θ such to
reduce Var(px|Z). Minimizing variance is equivalent to minimizing the second
moment, which can be bounded as

Eθ
[
1{L≥x} exp(−2θL+ 2ψ(θ))

]
≤ exp(−2θx+ 2ψ(θ)) for all θ ≥ 0. (85)

To minimize the bound, we do maximization of θx − ψ(θ) over θ ≥ 0. The
function ψ is strictly convex and passes through the origin, thus we choose

θx = max{0,unique solution to ψ′(θ) = x}. (86)

Note that θx depends on the initial choice of x. In practice x is set to be a
quick crude MC estimation of VaRq(L) based on a small pre-defined number of
samples. To justify this, numerical simulations show good estimation results of
P (L ≥ y) for y greater than x, as by [16].

We switch to the second term of (80), which is E[px|Z] = P (L ≥ x|Z) due to
(84). So we are interested in choosing a distribution for Z which would reduce
the variance of estimating P (L ≥ x|Z). Idealistically one would sample Z from
the density proportional to

z 7→ P (L ≥ x|Z)e−z
T z/2 (87)

since this would imply zero variance. However to make this a density, the
normalization constant is the value P (L ≥ x) which we actually seek. [16] and
other authors suggest to sample Z from a multivariate normal distribution with
mean

µ = arg max
z

P (L ≥ x|Z)e−z
T z/2. (88)

Optimal with respect to (88) µ can be numerically approximated in the following
way. Define

Fx(z) = −θx(z)x+ ψ(θx(z), z) (89)
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where ψ(θx(z), z) denotes (83) with PDn(z) for all loans n, and z is a sample
of Z. The inequality 1{y>x} ≤ exp(θ(y − x)), θ ≥ 0 yields

P (L ≥ x|Z = z) ≤ E [exp(θx(Z))(L− x)|Z = z] = exp(Fx(z)). (90)

Using this bound for (88) and taking logarithms yields optimization problem

µ̂ = arg max
z

{
Fx(z)− 1

2
zT z

}
, (91)

where µ̂ is an approximation for the IS mean µ.
For related asymptotical optimality proofs and conditions see [16] or [24].

In general asymptotic efficiency has been shown only under certain portfolio
conditions.

Finally, the full scheme for VaRmf
q estimation is:

1. Sample z from Ndim(µ̂)(µ̂, I), where I is the identity matrix.

2. Compute θx(z) using (86) and the twisted conditional default probabilities
PDn,θx(z) as in (81) for every loan n.

3. Sample L under the twisted conditional distribution and the corresponding
likelihood ratio

exp(−θL+ ψ(θ)) exp(−µ̂T z + µ̂T µ̂/2). (92)

After sampling L1, L2, . . . , LV for some V ∈ N and the corresponding likelihoods
W1,W2, . . . ,WV , order {Li}Vi=1 as L(1) ≤ L(2) ≤ . . . ≤ L(V ). Now find

V ∗ = sup

{
v :

1

V

V∑
i=v

W(i) ≥ 1− q

}
(93)

and return the VaRmf
q estimator L(V ∗). Said in words, the right tail of the

ordered likelihoods {W(i)}Vi=1 is of the smallest size. We begin with W(V ) and
keep on adding W(V−1) and so on as long as the sum becomes greater than
1 − q. At this point we stop, fix the index of the last added W(V ∗) and return
the corresponding L(V ∗). For the statistical ES estimator, based on sample data,
we choose [24, Eq. 5].

7.2 IS performance test

In this subsection IS performance results are presented. Calculations are based
on 4 portfolios taken from subsection 6.1. Three percentile levels q = 0.95,
0.99, 0.999 are considered. In all following tables crude MC1 stands for crude
Monte-Carlo estimation based on 100′000 samples, crude MC2 based on 1 mil-
lion samples, IS1 is the IS estimation based on 100′000 samples and IS2 denotes
the IS estimation based on 20′000 samples. Additionally to that, let IS3 de-
note the importance sampling procedure based on 100′000 samples, but without
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probability transformation, e.g., omit step 2. in VaRmf
q estimation scheme from

subsection 7.1 and replace (92) by

exp(−µ̂T z + µ̂T µ̂/2). (94)

100 runs of each estimation procedure is performed and the mean and stan-
dard deviation (std) for both VaR and ES results are listed. For the ISi,
i = 1, 2, 3, the first 10% of the samples were used to calculate the initial es-
timator of VaRq which is the x from subsection 7.1.

Table 4: q = 0.95. VaR and ES statistics, based on 100 repetitions. Crude MC1

precision competitive with importance sampling (IS) for moderate quantile levels
(if compared to q = 0.999, table 5). Portfolios defined in subsection 6.1.

portfolio config. Method VaRq mean VaRq std ESq mean ESq std

hCDI & hCorr

crude MC1 0.0920 4.7283e-04 0.1274 7.0696e-04
IS1 0.0921 1.4850e-04 0.1276 1.5054e-04
IS2 0.0921 3.6170e-04 0.1276 3.2644e-04
IS3 0.0921 1.8361e-04 0.1276 1.4707e-04

mhCDI & mCorr

crude MC1 0.0718 3.1372e-04 0.0971 5.0507e-04
IS1 0.0718 1.2711e-04 0.0970 9.9494e-05
IS2 0.0718 2.7586e-04 0.0970 2.2059e-04
IS3 0.0718 1.3012e-04 0.0970 9.9649e-04

mlCDI & lCorr

crude MC1 0.0477 1.1935e-04 0.0563 1.4272e-04
IS1 0.0477 1.6023e-04 0.0563 1.3569e-04
IS2 0.0476 3.4411e-04 0.0562 3.2871e-04
IS3 0.0477 2.2479e-04 0.0562 2.0418e-04

lCDI & nCorr

crude MC1 0.0437 8.7801e-05 0.0499 1.2348e-04
IS1 0.0437 2.0667e-04 0.0499 6.9718e-04
IS2 0.0437 8.3421e-04 0.0499 8.4528e-04
IS3 0.0437 2.7309e-04 0.0498 6.2491e-04

As tables 4 and 5 show, for less diversified portfolios variance reduction
technique [16] provided increased estimation quality, whereas this is not the case
for better diversified portfolios as mlCDI & lCorr and lCDI & nCorr. Clearly
the relative difference in mean VaR and ES between IS and crude MC is higher
when considering higher level quantiles, i.e., higher q level. The main drawback
is the increased computational time, even compared to crude MC2. Note that
these calculations are portfolio-wise. The time consuming computations based
on importance sampling could be replaced by a simpler, brute force approach,
namely increased number of simulated portfolios in some region of interest using
crude MC based on more samples. Large number of artificial portfolios and
the non-linear regression could average out the error introduced by estimation
variance. It seems that from practical point of view the brute force approach is
more favourable.
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Table 5: q = 0.999. VaR and ES statistics, based on 100 repetitions. Estimation
variance increases with q and for portfolios with more probability mass in the
tails. Increased number of samples reduces estimation variance both for crude
Monte-Carlo and in importance sampling methods. IS performs better for less
diversified portfolios. Considerable decsrease in computational time is achieved
by dropping probability transformation (step 2, subsection 7.1), IS3, whereas
the precision stays close to the full scheme IS1. Portfolios defined in subsection
6.1.

portfolio config. Method VaRq mean VaRq std ESq mean ESq std

hCDI & hCorr

crude MC1 0.2303 0.0037 0.2641 0.0046
crude MC2 0.2300 9.6624e-04 0.2619 0.0013
IS1 0.2300 2.2492e-04 0.2616 1.8232e-04
IS2 0.2299 5.7512e-04 0.2613 0.0022
IS3 0.2299 2.7987e-04 0.2616 1.9329e-4

mhCDI & mCorr

crude MC1 0.1705 0.0026 0.1958 0.0033
crude MC2 0.1704 6.9944e-04 0.1942 8.7569e-04
IS1 0.1703 1.8958e-04 0.1941 1.6196e-04
IS2 0.1704 5.3229e-04 0.1941 5.0803e-04
IS3 0.1704 2.3001e-04 0.1941 1.6253e-04

mlCDI & lCorr

crude MC1 0.0794 7.8185e-04 0.0874 0.0010
crude MC2 0.0795 2.8682e-04 0.0868 3.6309e-04
IS1 0.0786 0.0016 0.0841 0.0063
IS2 0.0783 0.0022 0.0833 0.0064
IS3 0.0784 0.0016 0.0818 0.0097

lCDI & nCorr

crude MC1 0.0666 5.3899e-04 0.0724 6.7513e-04
crude MC2 0.0667 1.6454e-04 0.08718 2.0314e-04
IS1 0.0667 8.2234e-04 0.0704 0.0059
IS2 0.0666 0.0016 0.0685 0.0086
IS3 0.0668 0.0017 0.0694 0.0082

Table 5 shows that IS3 leads to similar estimation quality as in the case of the
full importance sampling scheme IS1. Nevertheless a considerable reduction in
computational time speaks in favour of IS3. Furthermore, IS3 uses approximately
the same computational time as IS2 and even provides better results. One can
notice that importance sampling procedures as such show better performance in
less diversified portfolios, thus for heavy tailed loss distributions L, (1), where
IS can benefit from more synchronized movements in the underlying systematic
risk factors and capture this behaviour via sampling distribution mean shifting,
as given by (91). This motivates to apply both IS3 and crude MC3 in one DF
parametrization procedure, where the usage of one or another depends on the
CDI and β̄ of the artificial portfolio, which is being processed.
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7.3 High performance computing

7.3.1 Discussion on high performance computing

In the last five decades financial instruments have expanded both in their com-
plexity and size. The associated risks need to be handled quickly although it
gets harder to identify them. Alongside with the mathematical studies one can
also profit from new computation abilities. We exploited the advantages of the
ETHZ supercomputer Brutus when performing DF parametrization. Note that
the scheme, presented in subsection 4.3, is well suited for independent paral-
lelization. Steps 3.-10. can be simulated in parallel. The resulting data of all
parallel computations is collected and used for step 11. Additionally to that,
sectorization of portfolio loans in order to capture the underlying dependence
structures under the available market data frameworks also reduces problems
dimensionality. As by Longstaff and Schwartz (2001), [18], this simple paral-
lelization is close to an optimal approach in practice. Yet the speed of each
Monte-Carlo simulations as such, which is at the core of [1], can be improved
by using, for instance, GPUs, as by Spiers and Wallez (2010), [17]. But this
implies additional software challenges and a consideration whether some partic-
ular problem’s framework and data gathering will not counter-react and actually
reduce achieved computational speed-up in terms of hardware.

7.3.2 Note on ETH Zürcih central cluster Brutus

Brutus is the central high-performance cluster of ETH Zürich. It is jointly
owned by nearly 50 professors from 12 departments and the IT Services, who are
responsible for the acquisition and management of the system. The part financed
by the IT Services is made available to the whole scientific community of ETH.
Brutus is a heterogeneous system containing 11 kinds of standard, large-memory,
GPU and legacy compute nodes. The peak performance of Brutus is slightly over
200 teraflops (200 · 1012 floating-point operations per second). Brutus directly
allows a wide range of applications, in particular, third-party applications such
as Matlab, Ansys CFX, Ansys FLUENT and others. All researchers from
ETH Zürich are allowed to use Brutus without restriction. It was ranked the
88th fastest computer in the world in November 2009 (top500.org) and showed
to be the most energy efficient general purpose supercomputer in the world at
that time (Heise.de).

7.4 Summary

Reliance of [1] on Monte-Carlo estimations and the difficulties of estimating
high level quantiles for heavy tailed random variables motivated to consider
improved Monte-Carlo methods, particularly importance sampling. Subsection
7.1 introduced IS theoretical background. We performed test for a variety of
IS and crude MC constellations in subsection 7.2. The main IS drawback is
the considerable increase in computational time due to the many additional
optimization operations, step 2, subsection 7.1. Yet the increased precision can
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also be achieved by a crude MC based on increased number of samples, which
can still be faster. Furthermore, for well-diversified portfolios crude MC showed
better estimation quality. Additionally to that, densely sampled portfolios and
non-linear regression may cancel out error, introduced in each portfolio’s VaRmf

estimation. As a final remark, we suggest to use crude MC in case one wants to
avoid the additional implementational burden or to apply a mix of crude MC
and IS3 as discussed at the end of subsection 7.2.
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8 Conclusion

In this thesis a comparison of two methodologies for credit risk capital estimation
is presented. Each bank is interested in providing safe services to its costumers
and investors. Nevertheless, a bank is aimed at maximizing its profits and thus
exploiting all financial resources at its disposal, leaving less as a safety buffer
capital. A trade-off has to be considered. This implies, first of all, a discussion
on a reasonable credit risk measure and, secondly, an appropriate calculation
schemes. In section 2 we introduced and discussed typical risk measures. After
that a general credit portfolio loss model was presented in section 3. Then two
methodologies for credit risk capital estimation are revisited. Understanding
some limitations and a comparison of the two methodologies is the goal of the
thesis.

If one has to deal with a single portfolio or rarely upcoming calculations,
PykhDüll method ([3] with the granularity adjustment on a loan level) is a
good choice. So far it is the only know method in the literature to provide
analytical estimates of VaR and ES under the multi-factor asset return frame-
work. It showed good results for all considered types of portfolios. The main
advantage of Pykhtin approach is its universality. It also provides an opportu-
nity to monitor the evolution (after adding or removing some loans or due to
the changes in the underlying risk parameters of one or more borrowers) of a
portfolio in terms of ∆VaR∞ and ∆VaRGa, which capture the difference to the
infinitely fine grained ASRF portfolio.

In contrast to PykhDüll, Cespedes methodology, [1], explicitly includes three
risk management instruments. It provides fast portfolio comparison in terms
of two diversity capturing measures as CDI, (37), and β̄ (β from (14), (41),
(42)), and the risk measure itself once the DF, (44), is obtained. Yet it is im-
portant to appropriately set up the DF parametrization procedure, an example
of which is presented in subsection 4.4. This is the main drawback of [1], since
if some portfolio of interest falls into the region where none or small number
of artificial portfolios were considered, the results are unreliable. Furthermore,
adjusting DF by adding new artificial portfolios will not only affect the result-
ing parametrization formula and thus could make all results based on previous
parametrization not fully consistent with the new ones, but is also time con-
suming. Another drawback is the inability of CDI and β̄ to fully diversify credit
portfolios. As discussed in subsection 4.5, CDI does not capture name con-
centration risks, whereas β̄ may not distinguish two portfolios of the same size
with different underlying inter-sector dependence structure. Apart from that,
the model for DF parametrization, step 11, subsection 4.3, is an issue itself.
The motivation for the polynomial type DF parametrization lies in the Taylor
expansion of (38). This is even more important under such artificial portfolio
sampling frameworks, which result in concentrated representation of some small
part of CDI-β̄ plane. We have seen this under the asset returns model (16) in
Example 5, subsection 4.6. In this case it could happen that some more so-
phisticated parametrization models perform better, i.e., in the sense of data fit
statistics as adjusted R2. These models may lead to distorted credit risk capital
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results when applying them to portfolios with CDI and β̄ values far from densely
represented region.

As mentioned in the summary of section 6, Cespedes methodology, [1], is
superior to Pykhtin, [8], in the framework of intensive computations. Even the
relaxed version of Pykhtin, denoted by PykhDüll, needs more time to perform
one portfolio evaluation if compared to Cesp, under the condition of given DF
parametrization.

A drawback of both models is the assumed standard normal distributions
for the asset returns (13). This induces less collective downward movements,
which are usually observed during financial stress periods. Yet for [1] this as-
sumption can be relaxed and any other copula besides Gaussian can be used
to describe portfolio asset return dependence structure. One can choose, for
instance, student-t, Clayton or Archimedian copula to model stronger depen-
dence both in stress or economical growth periods. But this gives no rise for
comparison studies due to restrictive standard normality assumption in [8].

There are several additional remarks concerning the calibration of method-
ology [1], which are important when, for instance, comparing [1] with the Basel
II, [4], credit risk capital formula. Basel II capital formula is an application of
ASRF model and, as a result of DF ≤ 1, is always greater or equal than credit
risk capital obtained via [1]. Yet this is an issue of the right choice of risk param-
eters, which is not the central topic of this thesis. As mentioned before, given
a reference portfolio construction together with risk parameters under which
the ASRF provides exact results, DF can be rescaled, as performed in [12],
such that DF = 1 for equivalent portfolios, thus DF ≤ 1 for better diversified
(with respect to the reference portfolio) cases and DF ≥ 1 for less diversified
portfolios.
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A Inter-sector correlation matrices

The often used inter-sector correlation matricesQ1, Q2, Q3 andQ4 (all in RK×K)
are presented here. The number of sectors is set to K = 12. This choice was
motivated by a practical example from the industry, yet this does not introduce
any specific limitations or superiority to any other K ∈ N. Like in practice, cor-
relation matrices are calculated based on the data sets. In our case we sampled
data from 12 dependent (via a common random factor) normally distributed
random variables, whereas the weight of the common factor is increased to ob-
tain relatively higher correlation levels. Only for presentational purpose in this
appendix we rounded all matrix entries up to the 4th decimal digit.

Q1 is the identity matrix. We also call it nCorr to emphasize that there is no
linear dependence, i.e., no correlation, across sector level performance indices.

Q2 represents the case of relatively low correlation across sector dynamics,
both positively and negatively correlated. We also call it lCorr. See table
6. Mean and standard deviation of nondiagonal entries of Q2 are 0.0166 and

Table 6: Q2 (lCorr)

1 0,05 0,06 0,07 -0,01 0,04 -0,05 -0,03 -0,08 0,05 0,04 -0,02
0,05 1 0,04 0,01 0,04 0,04 0,09 -0,08 0,02 0,11 -0,01 0,05
0,06 0,04 1 -0,06 0,02 -0,05 0,05 0,04 -0,24 -0,03 0,06 -0,1
0,07 0,01 -0,06 1 -0,05 0,04 0,23 -0,01 0,04 0,15 -0,11 0,15

-0,01 0,04 0,02 -0,05 1 0,08 0,16 0 0,09 -0,26 0,27 0,05
0,04 0,04 -0,05 0,04 0,08 1 0,13 -0,03 0,18 -0,05 0,03 0,04

-0,05 0,09 0,05 0,23 0,16 0,13 1 -0,03 0,05 -0,05 0,06 -0,1
-0,03 -0,08 0,04 -0,01 0 -0,03 -0,03 1 -0,1 0,15 -0,03 -0,06
-0,08 0,02 -0,24 0,04 0,09 0,18 0,05 -0,1 1 -0,09 0,09 0,05
0,05 0,11 -0,03 0,15 -0,26 -0,05 -0,05 0,15 -0,09 1 -0,1 -0,01
0,04 -0,01 0,06 -0,11 0,27 0,03 0,06 -0,03 0,09 -0,1 1 0,01

-0,02 0,05 -0,1 0,15 0,05 0,04 -0,1 -0,06 0,05 -0,01 0,01 1

0.0929, respectively.
Matrix Q3 or, equivalently, mCorr was obtained using MSCI data of 12 dif-

ferent industry sector indices. Results are shown in table 7. Mean and standard
deviation of nondiagonal entries of Q3 are 0.4222 and 0.2623, respectively.

Q4 imitates the case of relatively high positive correlation across sector dy-
namics. We also call it hCorr. Its entries are shown in table 8. Mean and
standard deviation of nondiagonal entries of Q4 are 0.7483 and 0.0622, respec-
tively.
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Table 7: Q3 (mCorr)

1 0,57 0,46 0,65 0,33 0,58 0,33 0,59 0,31 0,00 0,23 0,60
0,57 1 0,59 0,77 0,41 0,91 0,78 0,79 0,18 0,06 0,63 0,63
0,46 0,59 1 0,56 0,63 0,60 0,42 0,56 0,13 0,02 0,30 0,55
0,65 0,77 0,56 1 0,48 0,84 0,62 0,76 0,20 0,08 0,54 0,76
0,33 0,41 0,63 0,48 1,00 0,40 0,39 0,39 0,00 -0,06 0,29 0,46
0,58 0,91 0,60 0,84 0,40 1 0,77 0,86 0,21 0,07 0,60 0,69
0,33 0,78 0,42 0,62 0,39 0,77 1 0,58 0,09 0,12 0,74 0,47
0,59 0,79 0,56 0,76 0,39 0,86 0,58 1 0,25 0,09 0,43 0,63
0,31 0,18 0,13 0,20 0,00 0,21 0,09 0,25 1 0,05 0,09 0,21
0,00 0,06 0,02 0,08 -0,06 0,07 0,12 0,09 0,05 1 0,08 0,01
0,23 0,63 0,30 0,54 0,29 0,60 0,74 0,43 0,09 0,08 1 0,50
0,60 0,63 0,55 0,76 0,46 0,69 0,47 0,63 0,21 0,01 0,50 1

Table 8: Q4 (hCorr)

1 0,72 0,63 0,71 0,68 0,79 0,75 0,67 0,68 0,76 0,7 0,71
0,72 1 0,7 0,75 0,78 0,83 0,8 0,69 0,71 0,83 0,7 0,77
0,63 0,7 1 0,71 0,72 0,77 0,71 0,59 0,72 0,72 0,67 0,8
0,71 0,75 0,71 1 0,73 0,81 0,79 0,72 0,72 0,82 0,7 0,79
0,68 0,78 0,72 0,73 1 0,82 0,77 0,65 0,67 0,8 0,66 0,76
0,79 0,83 0,77 0,81 0,82 1 0,87 0,76 0,82 0,91 0,79 0,88
0,75 0,8 0,71 0,79 0,77 0,87 1 0,72 0,74 0,83 0,75 0,84
0,67 0,69 0,59 0,72 0,65 0,76 0,72 1 0,68 0,76 0,69 0,77
0,68 0,71 0,72 0,72 0,67 0,82 0,74 0,68 1 0,77 0,7 0,77
0,76 0,83 0,72 0,82 0,8 0,91 0,83 0,76 0,77 1 0,74 0,86
0,7 0,7 0,67 0,7 0,66 0,79 0,75 0,69 0,7 0,74 1 0,76

0,71 0,77 0,8 0,79 0,76 0,88 0,84 0,77 0,77 0,86 0,76 1
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